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Data-driven decision making

Stochastic
optimization

minx c(x , θ)

Family of prob.
measures

{Pθ ∶ θ ∈ Θ}

Data-gen.
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{ξt}t∈N
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Data-driven decision making

Stochastic
optimization

minx c(x , θ)

Family of prob.
measures

{Pθ ∶ θ ∈ Θ}

Data-gen.
process

{ξt}t∈N

Examples:

▸ Expected loss c(x , θ) = Eθ[`(x , ξ)]
▸ Risk of loss c(x , θ) = ρθ[`(x , ξ)]

▸ Covariate information c(x , θ) = Eθ[`(x , ξ)∣Cξ ∈ B]

▸ Long-run average loss c(x , θ) = lim
T→∞

1
T ∑

T−1
t=0 Eθ[`(πx(st), st)]
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Data-driven decision making

Stochastic
optimization

minx c(x , θ)

Family of prob.
measures

{Pθ ∶ θ ∈ Θ}

Data-gen.
process

{ξt}t∈N

Assumptions:

▸ All measures defined on (Ω,F)

▸ Θ ⊆ Rd open
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Data-driven decision making

Stochastic
optimization

minx c(x , θ)

Family of prob.
measures

{Pθ ∶ θ ∈ Θ}

Data-gen.
process

{ξt}t∈N

Examples:

▸ Finite-state i.i.d. processes

▸ Finite-state Markov chains

▸ Vector-autoregressive processes

▸ I.i.d. processes with parametric distribution function
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Motivating example — newsvendor problem
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Newsvendor problem

Stochastic
optimization

min
x∈X

c(x , θ)

▸ Order quantities x ∈ X = {1,2,⋯,d}

▸ Demand ξ ∈ Ξ = {1,2,⋯,d}

▸ Objective c(x , θ)=Eθ[kx−p min{x , ξ}]

Data-gen.
process

{ξt}t∈N

▸ Historical demand ξt∈ Ξ

Family of prob.
measures

{Pθ ∶ θ ∈ Θ}

▸ {ξt}t∈N i.i.d. process under Pθ
▸ Pθ(ξt = i) = θi for i ∈ Ξ
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Surrogate optimization models

Original optimization problem

min
x∈X

c(x , θ)

Surrogate optimization problem

min
x∈X

ĉT (x)

Optimal
framework

Data Predictor

ξ1,⋯, ξT ĉT (x)

5 / 29



Surrogate optimization models
Original optimization problem

min
x∈X

c(x , θ)

Surrogate optimization problem

min
x∈X

ĉT (x)

Construction of ĉT
▸ Sample average approximation1

▸ Predict-then-optimize approach2

▸ Neural network model3

▸ Distributionally robust optimization model4

▸ etc.
1Shapiro, Annals of Statistics, 1989; 2Elmachtoub & Grigas, Management

Science, 2021; 3Donti et al., NeurIPS, 2017; 4Delage & Ye, Operations
Research, 2010
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Terminology

As a function of the training data ξ1,⋯ξT we denote

▸ Data-driven predictor ĉT
▸ Data-driven prescriptor x̂T = arg minx∈X ĉT (x)

Performance measures

1 In-sample (training) risk ĉT (x̂T )

2 Out-of-sample (generalization) risk c(x̂T , θ)

3 Out-of-sample disappointment Pθ(c(x̂T , θ) > ĉT (x̂T ))
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A basic tradeoff

Training risk
ĉT (x̂T )

Disappointment
Pθ(c(x̂T , θ) > ĉT (x̂T ))
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Data-driven newsvendor problem

Disappointment probability
Pθ⋆ [c(x̂T , θ

⋆
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Eθ⋆ [ĉT (x̂T )]

50 100 150 200

−8

−7

−6

Conservatism vs
disappointment probability

2% 5% 10%

−8

−7

−6

8 / 29



Data-driven newsvendor problem

Disappointment probability
Pθ⋆ [c(x̂T , θ

⋆
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Model 1: SAA model2

ĉT (x) = c(x , θ̂T )

2Shapiro, Annals of Statistics, 1989
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Data-driven newsvendor problem

Disappointment probability
Pθ⋆ [c(x̂T , θ

⋆
) > ĉT (x̂T )]
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Model 1: SAA model2

ĉT (x) = c(x , θ̂T ) + r
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Data-driven newsvendor problem

Disappointment probability
Pθ⋆ [c(x̂T , θ

⋆
) > ĉT (x̂T )]
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Model 2: DRO model with moment ambiguity set2

ĉT (x) = sup
θ∈Θ

{c(x , θ) ∶ ∣Eθ̂T [ξ
j
] −Eθ[ξj]∣ ≤ r ∀j = 1, . . . ,4}

2Delage & Ye, Operations Research, 2010
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Model 3: DRO model with Wasserstein ambiguity set2

ĉT (x) = sup
θ∈Θ

{c(x , θ) ∶ dW(θ̂T , θ) ≤ r}

2Mohajerin Esfahani & Kuhn, Mathematical Programming, 2018
8 / 29



Data-driven newsvendor problem

Disappointment probability
Pθ⋆ [c(x̂T , θ

⋆
) > ĉT (x̂T )]

50 100 150 200
0.0001

0.001

0.01

0.1

Conservatism
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Model 4: DRO model with KL-ambiguity set2

ĉT (x) = sup
θ∈Θ

{c(x , θ) ∶ D( θ̂T ∣∣ θ) ≤ r}

2Ben-Tal et al., Management Science, 2013
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Which method is optimal?
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Optimal data-driven decision making
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Optimal data-driven decision making (cont’d)

(☀)

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

min
ĉ, x̂

{ lim
T→∞

Eθ[ĉT (x̂T )]}
θ∈Θ

s. t. lim
T→∞

1
T logPθ (c(x̂T , θ) > ĉT (x̂T )) ≤ −r ∀θ ∈ Θ

Interpretation: Among all predictors and prescriptors with “small”
disappointment find the least conservative one

Pθ (c(x̂T , θ) > ĉT (x̂T )) ≤ e−rT+o(T)
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Optimal data-driven decision making (cont’d)
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Optimal data-driven decision making (cont’d)
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Optimal data-driven decision making (cont’d)
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Pareto dominant solutions

12 / 29



Optimizing over ALL surrogate models

(☀)

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

min
ĉ, x̂

{ lim
T→∞

Eθ[ĉT (x̂T )]}
θ∈Θ

s. t. lim
T→∞

1
T logPθ (c(x̂T , θ) > ĉT (x̂T )) ≤ −r ∀θ ∈ Θ
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Optimizing over ALL surrogate models

(☀)

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

min
ĉ, x̂

{ lim
T→∞

Eθ[ĉT (x̂T )]}
θ∈Θ

s. t. lim
T→∞

1
T logPθ (c(x̂T , θ) > ĉT (x̂T )) ≤ −r ∀θ ∈ Θ

Strenghts

▸ proxy for optimizing the out-of-sample risk

▸ admits a Pareto dominant solution in closed form

▸ errs on the side of caution

▸ facilitates separation of estimation and optimization
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Optimizing over ALL surrogate models

(☀)

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

min
ĉ, x̂

{ lim
T→∞

Eθ[ĉT (x̂T )]}
θ∈Θ

s. t. lim
T→∞

1
T logPθ (c(x̂T , θ) > ĉT (x̂T )) ≤ −r ∀θ ∈ Θ

Weaknesses

▸ performance criteria are asymptotic

▸ choice of r is subjective

▸ feasible/optimal models are biased
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Optimizing over ALL surrogate models

(☀)

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

min
ĉ, x̂

{ lim
T→∞

Eθ[ĉT (x̂T )]}
θ∈Θ

s. t. lim
T→∞

1
T logPθ (c(x̂T , θ) > ĉT (x̂T )) ≤ −r ∀θ ∈ Θ

Space of all possible predictors and prescriptors is large

▸ ĉT , x̂T can be any2 function depending on the available
training data ξ1,⋯ξT

▸ Can we restrict ourselves to smaller class of functions without
loosing optimality?

2Some technical details, see arXiv:2010:06606
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Optimizing over ALL surrogate models

(☀)

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

min
ĉ, x̂

{ lim
T→∞

Eθ[ĉT (x̂T )]}
θ∈Θ

s. t. lim
T→∞

1
T logPθ (c(x̂T , θ) > ĉT (x̂T )) ≤ −r ∀θ ∈ Θ

Key idea: Separation of estimation and optimization

Estimation Optimization
Data Estimator Predictor

ξ1,⋯, ξT θ̂T c̃(⋅, θ̂T )

1 Which estimator should one pick?

2 Is this separation without loss of optimality? Can we represent
the (strong) solution to (☀) as

ĉT (x) = c̃(x , θ̂T )
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Separation principle - intuition

Estimation Optimization
Data Estimator Predictor

ξ1,⋯, ξT θ̂T c̃(⋅, θ̂T )

When can this separation be without loss of optimality?

(i) No statistical information about θ is lost when considering
an estimator, i.e.,

θ Ð→ θ̂T Ð→ ξ1, . . . , ξT forms a Markov chain

(ii) Estimator concentrates fast enough around true model θ
⇒ θ̂T satisfies a large deviation principle
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Restricted optimization problem

Original problem (☀)

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

min
ĉ, x̂

{ lim
T→∞

Eθ[ĉT (x̂T )]}
θ∈Θ

s. t. lim
T→∞

1
T logPθ (c(x̂T , θ) > ĉT (x̂T )) ≤ −r ∀θ

Estimation Optimization
Data Estimator Predictor

ξ1,⋯, ξT θ̂T c̃(⋅, θ̂T )

Restricted problem (☀☀)

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

min
c̃, x̃

{c̃(x̃(θ), θ)}θ∈Θ

s. t. lim
T→∞

1
T logPθ (c(x̃(θ̂T ), θ) > c̃(x̃(θ̂T ), θ̂T )) ≤ −r ∀θ
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Large Deviations Theory

Definition: A sequence {θ̂T}T∈N satisfies a Large Deviation
Principle (LDP) if there is a “distance” function I (θ′, θ) such
that for any Borel set D ⊂ Θ′

− inf
θ′∈intD

I (θ′, θ)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
r

≤ lim inf
T→∞

1

T
logPθ (θ̂T ∈ D)

≤ lim sup
T→∞

1

T
logPθ (θ̂T ∈ D) ≤ − inf

θ′∈clD
I (θ′, θ)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
r

Pθ (θ̂T ∈ D) = e−r ⋅T+o(T)

Varadhan: Rare events do occur
every day. Someone always wins
a lottery!
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Large Deviations Theory (cont’d)

Definition: I ∶ Θ′ × clΘ → [0,∞] is called a regular rate
function if it is

(i) Radially monotonic in θ, i.e.,

{θ ∈ clΘ ∶ I (θ′, θ) ≤ r} ⊆ cl{θ ∈ Θ ∶ I (θ′, θ) < r}

(ii) Continuous on Θ′ ×Θ

(iii) Level-compact, i.e.,
{(θ, θ′) ∈ clΘ × clΘ′ ∶ I (θ′, θ) ≤ r} is compact ∀r > 0

Examples:

▸ Relative entropy Θ = Θ′ = ∆d , I (θ′, θ) = D(θ′∣∣θ)

▸ Ellipsoid Θ = Θ = R, I (θ′, θ) = (θ − θ′)⊺Σ−1(θ − θ′)

▸ many more ...
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Pareto-dominant solution to restricted optimization
problem

Restricted problem (☀☀)

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

min
c̃, x̃

{c̃(x̃(θ), θ)}θ∈Θ

s. t. lim
T→∞

1
T logPθ (c(x̃(θ̂T ), θ) > c̃(x̃(θ̂T ), θ̂T )) ≤ −r ∀θ

Assumption: θ̂T satisfies an LDP with regular rate function I

Theorem. The Pareto-dominant solution to (☀☀) is given
by the distributionally robust predictor

c̃(x , θ̂T ) =

⎧⎪⎪
⎨
⎪⎪⎩

max
θ∈Θ

c(x , θ)

s. t. I (θ̂T , θ) ≤ r
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DRO is optimal

Assumption: θ̂T satisfies an LDP with regular rate function I

Theorem. The Pareto-dominant solution to (☀☀) is given
by the distributionally robust predictor

c̃(x , θ̂T ) =

⎧⎪⎪
⎨
⎪⎪⎩

max
θ∈Θ

c(x , θ)

s. t. I (θ̂T , θ) ≤ r

▸ Shape of the ambiguity set determined by θ̂T
▸ Radius of ambiguity set determines the desired decay rate
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Separation principle
Assumptions:
▸ θ̂T satisfies an LDP with regular rate function I
▸ θ̂T is a sufficient statistic for θ

Theorem. The Pareto-dominant solution to (☀) is given by
the distributionally robust predictor

ĉT (x) =

⎧⎪⎪
⎨
⎪⎪⎩

max
θ∈Θ

c(x , θ)

s. t. I (θ̂T , θ) ≤ r

▸ Problems (☀) and (☀☀) have the same optimal solution
⇒ Separation of estimation and optimization is without loss
of optimality

▸ Sufficiency restricts to exponential fam. of distributions for Pθ
▸ Non-convex Rao-Blackwell type result

20 / 29



Conclusions of the Separation Theorem
1 DRO predictors are optimal in a wide sense

ĉT (x) =

⎧⎪⎪
⎨
⎪⎪⎩

max
θ∈Θ

c(x , θ)

s. t. I (θ̂T , θ) ≤ r

2 Ambiguity set is induced by the choice of estimator
▸ I (⋅, θ) is the rate function related to the estimator θ̂T
▸ size of the ambiguity set r quantifies the decay rate of the

disappointment probability

3 Invariance principle
▸ ψ ∶ Θ′ → Θ′ homeomorphism
▸ ψ(θ̂T ) satisfies LDP with rate function

Iψ(θ′, θ) = I (ψ−1(θ′), θ)
▸ DRO predictor is invariant

⎧⎪⎪
⎨
⎪⎪⎩

max
θ∈Θ

c(x , θ)

s. t. I (θ̂T , θ) ≤ r
=

⎧⎪⎪
⎨
⎪⎪⎩

max
θ∈Θ

c(x , θ)

s. t. Iψ(ψ(θ̂T ), θ) ≤ r
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2 Ambiguity set is induced by the choice of estimator
▸ I (⋅, θ) is the rate function related to the estimator θ̂T
▸ size of the ambiguity set r quantifies the decay rate of the

disappointment probability

3 Invariance principle
▸ ψ ∶ Θ′ → Θ′ homeomorphism
▸ ψ(θ̂T ) satisfies LDP with rate function
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Revisit newsvendor problem
▸ # copies stocked: x ∈ X = {0,1,⋯,d}

▸ random daily demand: ξ ∈ Ξ = {0,1,⋯,d}

▸ model: Pθ[ξ ∈ i] = θi
▸ cost: c(x , θ) = ∑d

i=0 θi(−p min{x , i}) + kx

▸ estimator: (θ̂T )i =
1
T ∑

T
t=1 1ξt=i , i = 0,⋯,d

Sanov’s Theorem. The estimator θ̂T satisfies a large devia-
tion principle with regular rate function I (θ̂T , θ) = D(θ̂T ∥θ)

▸ θ̂T is a sufficient statistic (Fisher-Neyman)

▸ DRO predictor with relative entropy ambiguity set is optimal

ĉT (x) = c̃(x , θ̂T ) =

⎧⎪⎪
⎨
⎪⎪⎩

max
θ∈Θ

c(x , θ)

s. t. D(θ̂T ∥θ) ≤ r
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ĉT (x) = c̃(x , θ̂T ) =

⎧⎪⎪
⎨
⎪⎪⎩

max
θ∈Θ

c(x , θ)

s. t. D(θ̂T ∥θ) ≤ r

22 / 29



Correlated setting: finite state Markov chain
▸ {ξt}t∈N stationary Markov chain, initial state σ

▸ pairwise description θij = P[ξt = i , ξt+1 = j]

▸ Models considered (irreducible)

Θ =

⎧⎪⎪
⎨
⎪⎪⎩

θ ∈ Rd×d
++ ∶ ∑

i ,j∈Ξ
θij = 1, ∑

j∈Ξ
θij = ∑

j∈Ξ
θji ∀i ∈ Ξ

⎫⎪⎪
⎬
⎪⎪⎭

▸ Estimator: (θ̂T )ij =
1
T (1σ=i1ξ1=j +∑

T−1
t=1 1ξt=i1ξt+1=j)

sufficient statistic for θ (Fisher-Neyman)

▸ Estimator state space

Θ′
=

⎧⎪⎪
⎨
⎪⎪⎩

θ ∈ Rd×d
+ ∶ ∑

i ,j∈Ξ
θij = 1

⎫⎪⎪
⎬
⎪⎪⎭

▸ “Distance measure” between estimator and underlying model
→ conditional relative entropy
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Correlated setting: finite state Markov chain (cont’d)

Conditional relative entropy. For any θ ∈ Θ, θ′ ∈ Θ′

Dc(θ
′
∥θ) = ∑

i ,j∈Ξ
θ′ij (log(

θ′ij

∑k∈Ξ θ
′
ik

) − log(
θij

∑k∈Ξ θik
))

▸ Similar properties as the relative entropy
▸ non-negative
▸ Dc(θ

′∥θ) = 0⇔ θ′ = θ
▸ non-convex in θ ⇒ solving DRO problem [Li, S., Kuhn, ICML

2021]

Lemma. The estimator θ̂T satisfies an LDP with (regular)
rate function I (θ̂T , θ) = Dc(θ̂T ∥θ)

▸ [Dembo & Zeitouni, Chapter 3]

▸ Separation Theorem holds
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IID process with unknown mean

▸ i.i.d. process {ξt}t∈N
i.i.d.
∼ Pθ, unknown mean EPθ[ξ1] = θ

▸ Fθ distribution of ξ1 under Pθ
▸ log-moment generating function Λ(λ, θ) = log (∫Ξ eλ

⊺ξ dFθ(ξ))

▸ Estimator θ̂T = 1
T ∑

T
t=1 ξt

▸ consistent by Law of Large Numbers
▸ for many distributions is a sufficient statistic

▸ Cramér function Λ∗(s, θ) = supλ∈Rd{⟨λ, s⟩ − Λ(λ, θ)}

Lemma. The estimator θ̂T satisfies an LDP with (regular)
rate function I (θ′, θ) = Λ∗(θ′, θ)

▸ Consequence of Cramér’s Theorem

▸ Separation Theorem holds for many distributions
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IID process with unknown mean (cont’d)

Each distribution induces an ambiguity set

{θ ∈ Θ ∶ Λ∗(θ′, θ) ≤ r}

Fθ Λ∗(θ′, θ) dom(Λ∗(⋅, θ))

(a) Normal 1
2
(θ′ − θ)⊺Σ−1(θ′ − θ) Rd

(b) Exponential θ′−θ
θ

+ log(θ/θ′) R++
(c) Poisson θ′ log(θ′/θ) − θ′ + θ R++
(d) Bernoulli θ′ log( θ

′(1−θ)
θ(1−θ′)) − log( 1−θ

1−θ′ ) (0,1)

Many more possible, e.g., Gamma, Geometric, Binomial, ...
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Summary

Meta-optimization problem

▸ optimizes over surrogate optimization models

▸ balances in-sample risk vs. out-of-sample disappointment

▸ pushes down the out-of-sample risk

Separation of estimation and optimization

▸ holds if θ̂T is a sufficient statistic that obeys an LDP

▸ reminiscent of Rao-Blackwell theorem

Pareto-dominant solution is a DRO model

▸ ambiguity set is a rate-ball around θ̂T
▸ radius = decay rate of the out-of-sample disappointment

▸ invariant under homeomorphic transformations
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Conclusion

1 DRO is optimal: Optimal data-driven predictor is given as a
DRO problem centred around an estimator

2 Ambiguity set
▸ Structure induced by underlying stochastic process via LDP
▸ Size has operational meaning as the decay rate of the

disappointment probability

3 Data-driven DRO framework for non-i.i.d. data
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Outlook

▸ The proposed prescriptor is not consistent

ĉT (x) /Ð→ c(x , θ) as T →∞

▸ Idea: Can we trade speed in the decay of

Pθ (c(x̂T , θ) > ĉT (x̂T ))

to achieve consistency?

▸ Are there other statistical criteria for optimality?

Ô⇒ A. Ganguly and T. Sutter, Optimal learning via Moderate
Deviations Theory, arXiv:2305.14496, 2023
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Interval estimation
Goal: Estimate cost c(θ) via a confidence interval Î⋆T = I⋆T (θ̂T )

where I⋆T (θ) = [
¯
c⋆T ,r(θ), c̄

⋆
T ,r(θ)] with the following properties

1 Exponential accuracy:

Pθ(c(θ) ∉ Î⋆T ) ≤ e−rbT , 1 ≪ bT ≪ T

2 Minimality: Any interval IT (θ) = [
¯
cT ,r(θ), c̄T ,r(θ)]

satisfying 1 is eventually larger than I⋆T (θ)
3 Consistency: Î⋆T → {c(θ)} as T →∞

4 Mischaracterization probability:

Pθ(c(θ′) ∉ Î⋆T ) > e−rbT , ∀θ′ ∶ c(θ′) ≠ c(θ)

5 Uniformly most accurate (UMA): Any interval ÎT
satisfying 1 is such that

Pθ(c(θ′) ∈ Î⋆T ) ≤ Pθ(c(θ′) ∈ ÎT ), ∀θ′ ∶ c(θ′) ≠ c(θ)
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where I⋆T (θ) = [
¯
c⋆T ,r(θ), c̄

⋆
T ,r(θ)] with the following properties

1 Exponential accuracy:
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satisfying 1 is such that
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Pθ(c(θ) ∉ Î⋆T ) ≤ e−rbT , 1 ≪ bT ≪ T

2 Minimality: Any interval IT (θ) = [
¯
cT ,r(θ), c̄T ,r(θ)]

satisfying 1 is eventually larger than I⋆T (θ)
3 Consistency: Î⋆T → {c(θ)} as T →∞

4 Mischaracterization probability:

Pθ(c(θ′) ∉ Î⋆T ) > e−rbT , ∀θ′ ∶ c(θ′) ≠ c(θ)

5 Uniformly most accurate (UMA): Any interval ÎT
satisfying 1 is such that

Pθ(c(θ′) ∈ Î⋆T ) ≤ Pθ(c(θ′) ∈ ÎT ), ∀θ′ ∶ c(θ′) ≠ c(θ)
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3 Consistency: Î⋆T → {c(θ)} as T →∞

4 Mischaracterization probability:
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satisfying 1 is such that
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Heuristic CLT based confidence intervals

▸ Given a fixed α, CLT guarantees

lim
T→∞

Pθ(c(θ) ∉ ICLT
T ,α (θ̂T )) ≤ α

▸ for the CLT-based interval

I
CLT
T ,α (θ̂T ) = [c(θ̂T ) − κCLT

T (α), c(θ̂T ) + κCLT
T (α)]

κCLT
T (α) = Φ−1

(1 − α/2)
√

∇c(θ̂T )⊺S(θ̂T )∇c(θ̂T )/
√
T

▸ Heuristic choice α = e−rbT

Question: Does the CI ICLT
T ,α (θ̂T ) for α = e−rT satisfy any of

the properties 1 − 5 ?
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Optimal confidence interval

▸ Interval Î⋆T = I⋆T (θ̂T ) for I⋆T (θ) = [
¯
c⋆T ,r(θ), c̄

⋆
T ,r(θ)]

▸
¯
c⋆T ,r(θ

′) = infθ∈Θ{c(θ) ∶ IM(aT (θ′ − θ), θ) ≤ r}
▸ c̄⋆T ,r(θ

′) = supθ∈Θ{c(θ) ∶ IM(aT (θ′ − θ), θ) ≤ r}

▸ IM(⋅, θ): Moderate deviation rate function of θ̂T
▸ aT =

√
T /bT , 1 ≪ bT ≪ T

The confidence interval Î⋆T satisfies the properties 1 − 5

▸ Θ can be infinite dimensional

▸ mild assumptions on IM(⋅, θ)
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Example: Asymptotic variance of OU process
▸ Ornstein-Uhlenbeck process

dXt = −θXtdt + dWt , X0 = 0

▸ Asymptotic variance

c(θ) = lim
T→∞

1

T

T−1

∑
t=0

(Eθ[X 2
t ] −Eθ[Xt]

2) =
1

2θ

▸ Maximum likelihood estimator

θ̂T = −
X 2
T −T

2 ∫
T

0 X 2
t dt

, IM(ϑ, θ) =
ϑ2

2θ

▸ Optimal CI I⋆T (θ̂T ) = [c(θ̂T ) + κ−T , c(θ̂T ) + κ+T ]

κ±T =
1

2θ̂2
T

(rT ±

√

r2
T + 2θ̂T rT) , rT = rbT /T
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Example: Asymptotic variance of OU process

▸ Optimal value c(θ)

▸ Optimal interval I⋆T (θ̂T )

▸ CLT interval ICLT
T ,α (θ̂T ), α = e−rbT
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