

Recent Trends in Combinatorial Optimization Augmented Machine Learning

Axel Parmentier

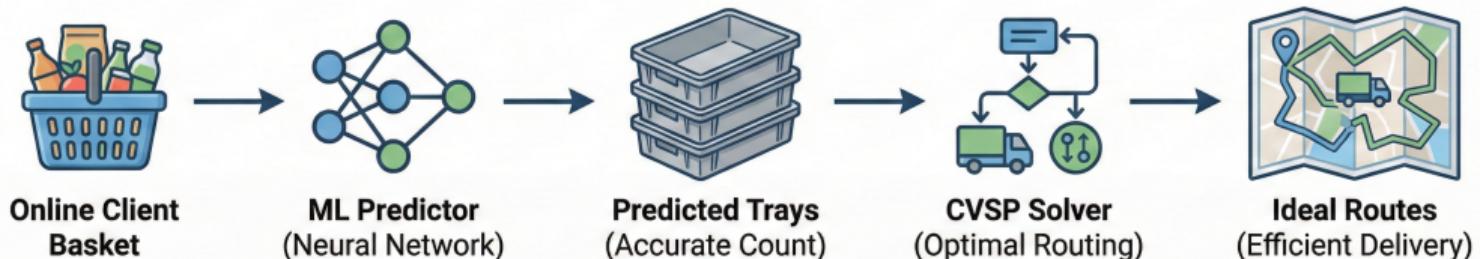
Cermics

École Nationale des Ponts et Chaussées

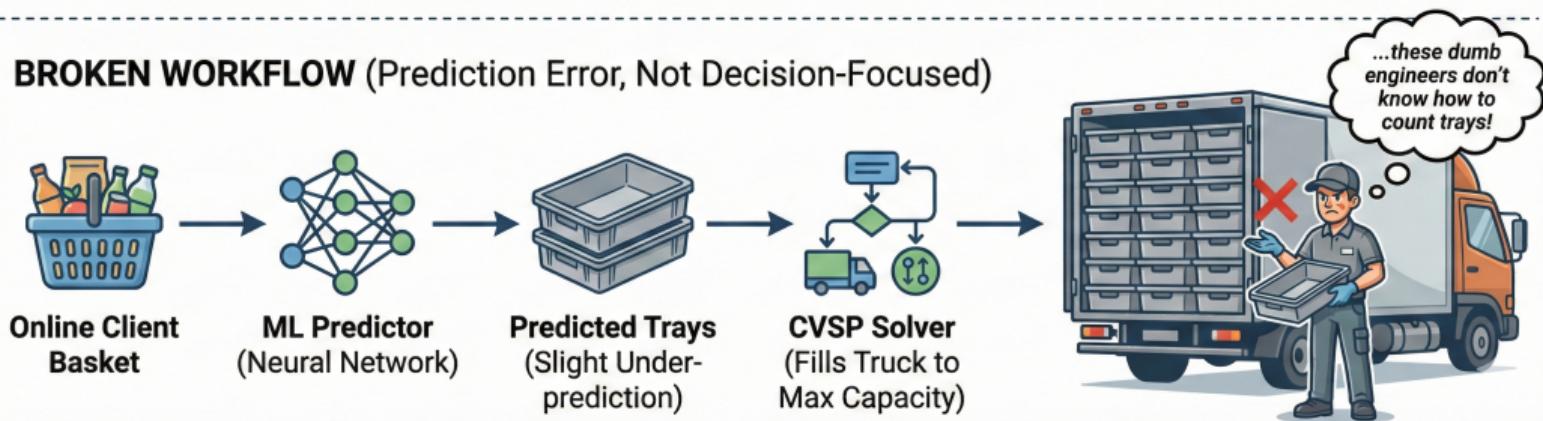
February 2, 2026

Why Non-Decision-Focused Learning Breaks Workflows

IDEAL WORKFLOW (Decision-Focused)



BROKEN WORKFLOW (Prediction Error, Not Decision-Focused)



The Data-Driven Revolution in Operations Research

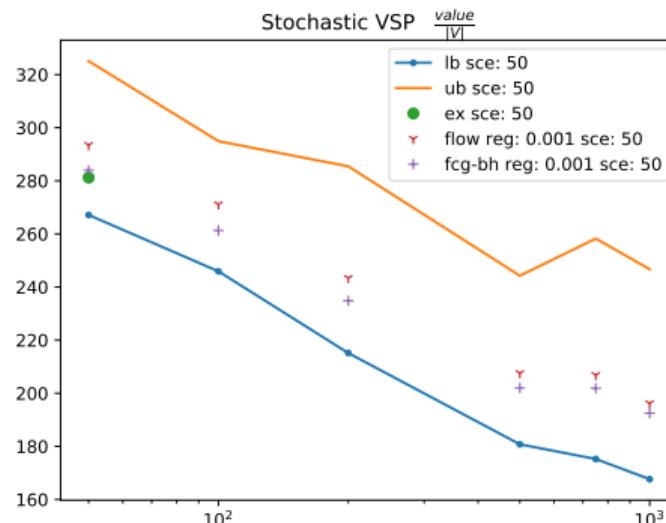
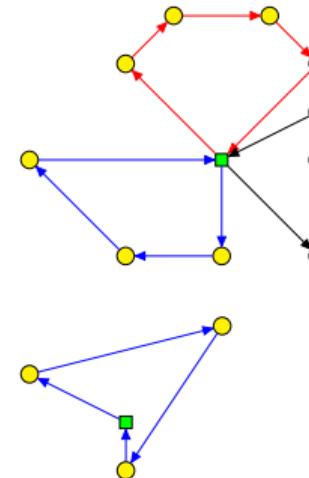
OR algorithms are **embedded in data-driven workflows**

Exploit data to tame uncertainty

- **More Efficient:** Optimize resource allocation
- **More Robust:** Handle unexpected disruptions
- **More Sustainable:** Reduce waste and empty miles / handle Sustainable Energies

Separating learning from decision can break workflows

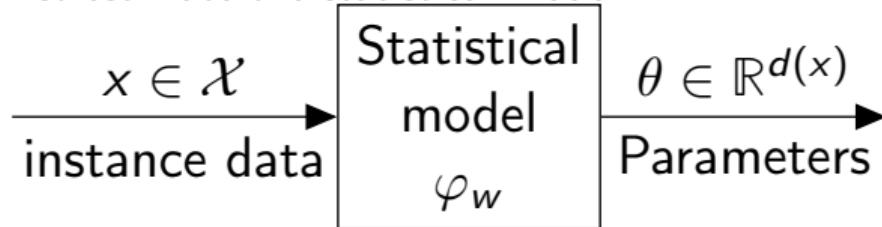
Value in OR comes from decreasing marginal costs



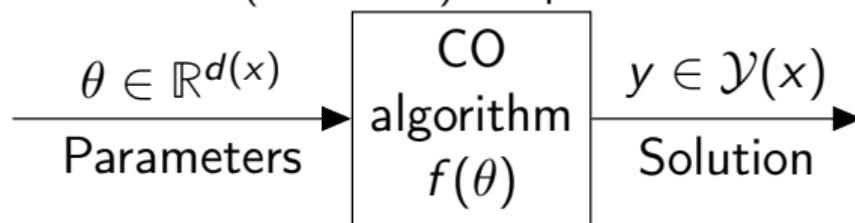
- Pure ML fails on Combinatorial Optimization
- OR researchers tend to focus on CO to make algorithms scale

The Trap: Predict-then-Optimize

First estimate the statistical model



Then solve the (stochastic) CO problem



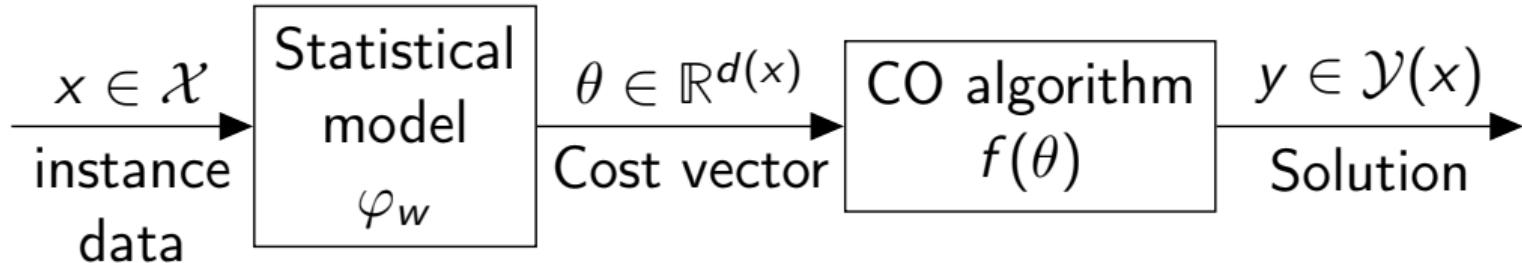
Learning algorithms ignore application

Training set $(x_1, \bar{\theta}_1), \dots, (x_n, \bar{\theta}_n)$
Loss $\mathcal{L}(\theta, \bar{\theta})$

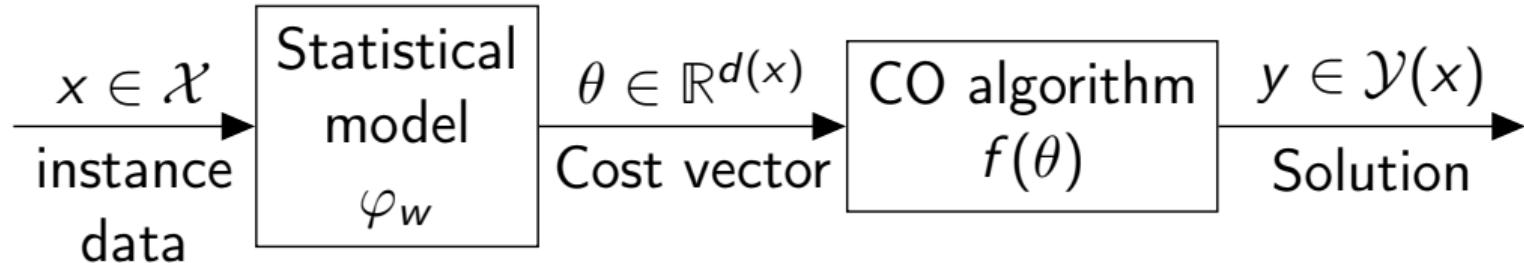
Learning problem

$$\min_w \frac{1}{n} \sum_{i=1}^n \mathcal{L}(\varphi_w(x_i), \bar{\theta}_i)$$

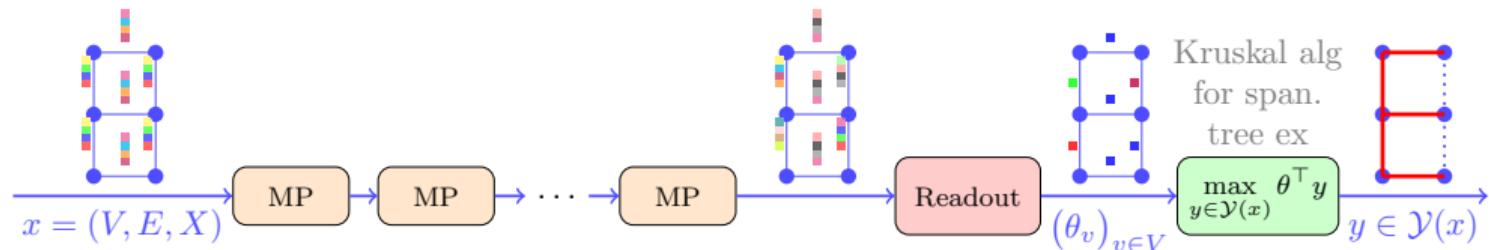
Small prediction errors can lead to catastrophic decisions



Combinatorial Optimization Augmented Machine Learning



Trained by decision focused learning $\min_w \frac{1}{n} \sum_{i=1}^n \mathcal{L}(\varphi_w(x_i), \bar{y}_i)$.



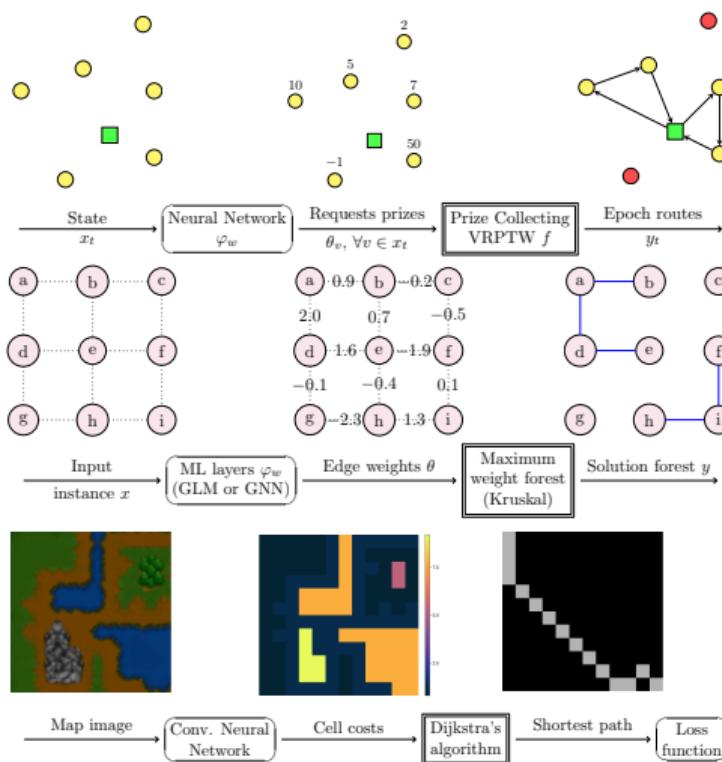
- 1 Applications in OR and architectures
 - Contextual stochastic optimization
 - Dynamic problems
- 2 Supervised learning for static problems
- 3 Empirical risk minimization for contextual stochastic optimization
- 4 Learning for dynamic problems

Multistage
stochastic
optimization

Contextual
stochastic
optimization

Data-driven
optimization

Settings and architectures



EURO NeurIPS
challenge 2022.
Baty et al. 2024;
Greif et al. 2024

Donti, Amos,
and Kolter 2017;
Dalle et al. 2022

Pogančić et al.
2019; Berthet
et al. 2020

1 Applications in OR and architectures

Contextual stochastic optimization

Dynamic problems

2 Supervised learning for static problems

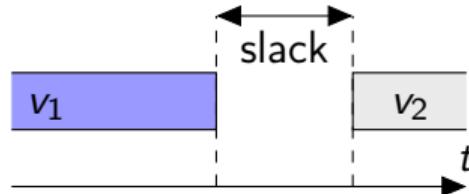
3 Empirical risk minimization for contextual stochastic optimization

4 Learning for dynamic problems

Supervised learning for dynamic problems

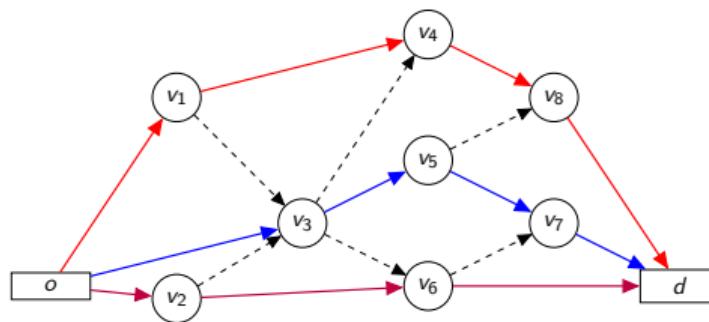
Structured Reinforcement Learning

Resilience: Stochastic Vehicle Scheduling Problem



$$\begin{aligned}
 c_p &= \text{vehicle cost} + \mathbb{E}(\text{propagated delay cost}) \\
 &= c^{\text{veh}} + \frac{1}{|\Omega|} \sum_{\omega \in \Omega} \sum_{v \in P} \xi_v^P(\omega)
 \end{aligned}$$

Reduce costs due to delay propagation along rotations



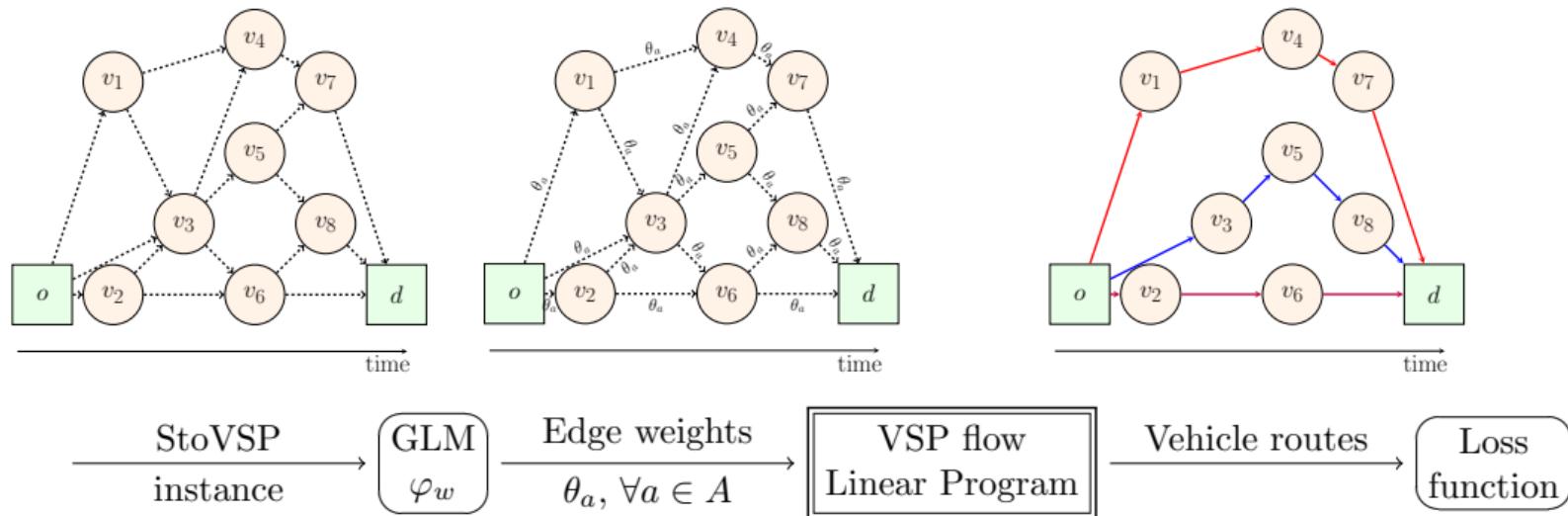
$$\begin{aligned}
 \min \sum_{P \in \mathcal{P}} c_P z_y \\
 \sum_{P \ni v} y_P = 1 \quad \forall v \\
 y_P \in \{0, 1\}
 \end{aligned}$$

Challenges

Even with simplest
delay models

- No tractable moment formulation
- SAA does not scale (exact $|V| \leq 80$, heuristics $|V| \leq 400$)
- Cannot afford more than a single deterministic resolution

Decision aware learning for Contextual Stochastic VSP



Excellent performance on large scale instances¹

Enables being contextual

¹A. P. (Apr. 2021). "Learning to Approximate Industrial Problems by Operations Research Classic Problems". In: *Operations Research*; Guillaume Dalle et al. (July 2022). *Learning with Combinatorial Optimization Layers: A Probabilistic Approach*. eprint: 2207.13513.

Contextual stochastic combinatorial optimization

Contextual stochastic optimization problem²

$$\min_{\pi \in \mathcal{H}} \mathcal{R}(\pi)$$

$$\text{where } \mathcal{R}(\pi) = \mathbb{E}_{(\mathbf{x}, \xi), \mathbf{y} \sim \pi(\cdot|\mathbf{x})} [$$

$$c(\mathbf{x}, \mathbf{y}, \xi)]$$

context in \mathcal{X}

decision in $\mathcal{Y}(\mathbf{x})$

noise correlated with \mathbf{x}

Assumptions:

- we have an efficient algorithm to solve

$$\min_{y \in \mathcal{Y}(\mathbf{x})} c(\mathbf{x}(\omega), y, \xi(\omega)) + \langle \theta | y \rangle$$

- $\mathcal{Y}(\mathbf{x})$ is finite (but exponentially large)
- we have access to a dataset $\mathcal{D} = (x_i, \xi_i)_{i \in [N]}$

²Utsav Sadana et al. (Mar. 2024). “A Survey of Contextual Optimization Methods for Decision-Making under Uncertainty”. In: *European Journal of Operational Research*. issn: 0377-2217. doi: 10.1016/j.ejor.2024.03.020. (Visited on 07/12/2024).

1 Applications in OR and architectures

Contextual stochastic optimization

Dynamic problems

2 Supervised learning for static problems

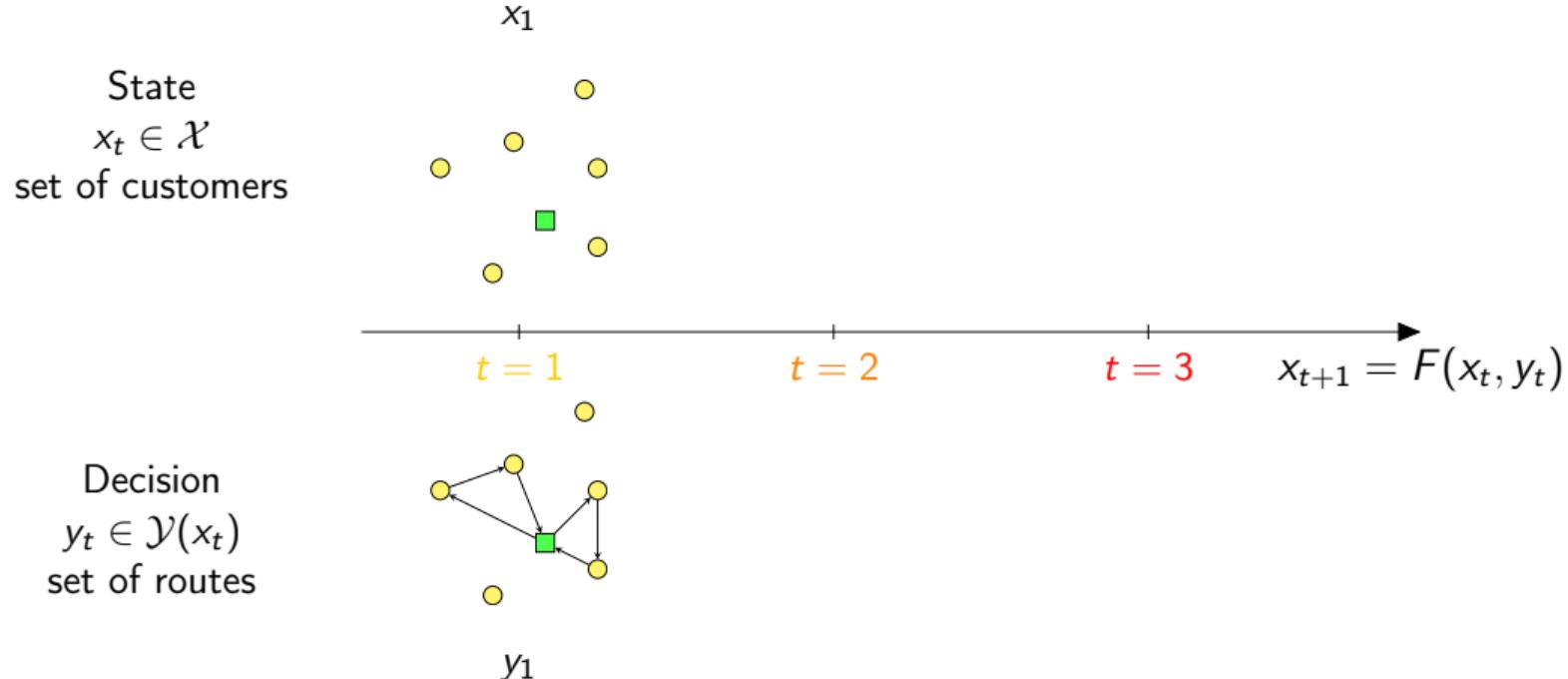
3 Empirical risk minimization for contextual stochastic optimization

4 Learning for dynamic problems

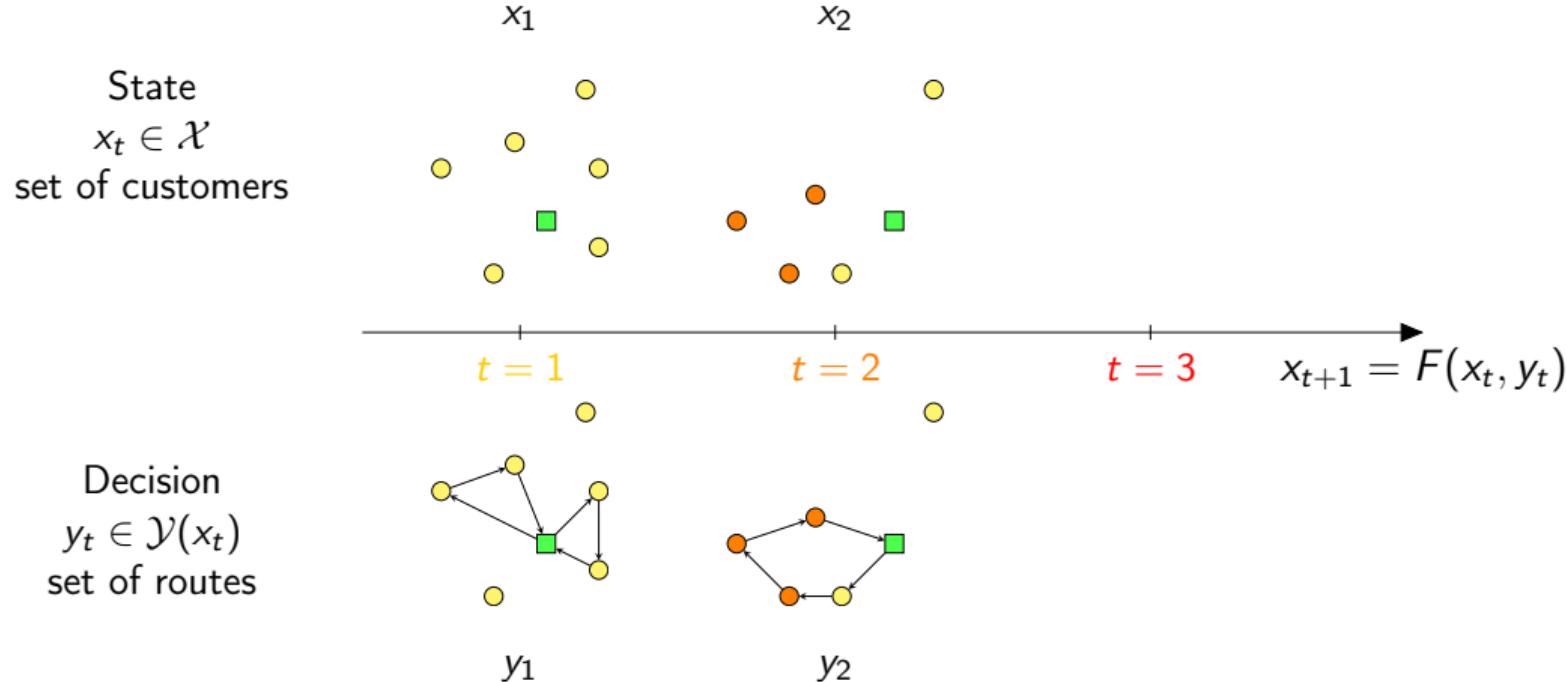
Supervised learning for dynamic problems

Structured Reinforcement Learning

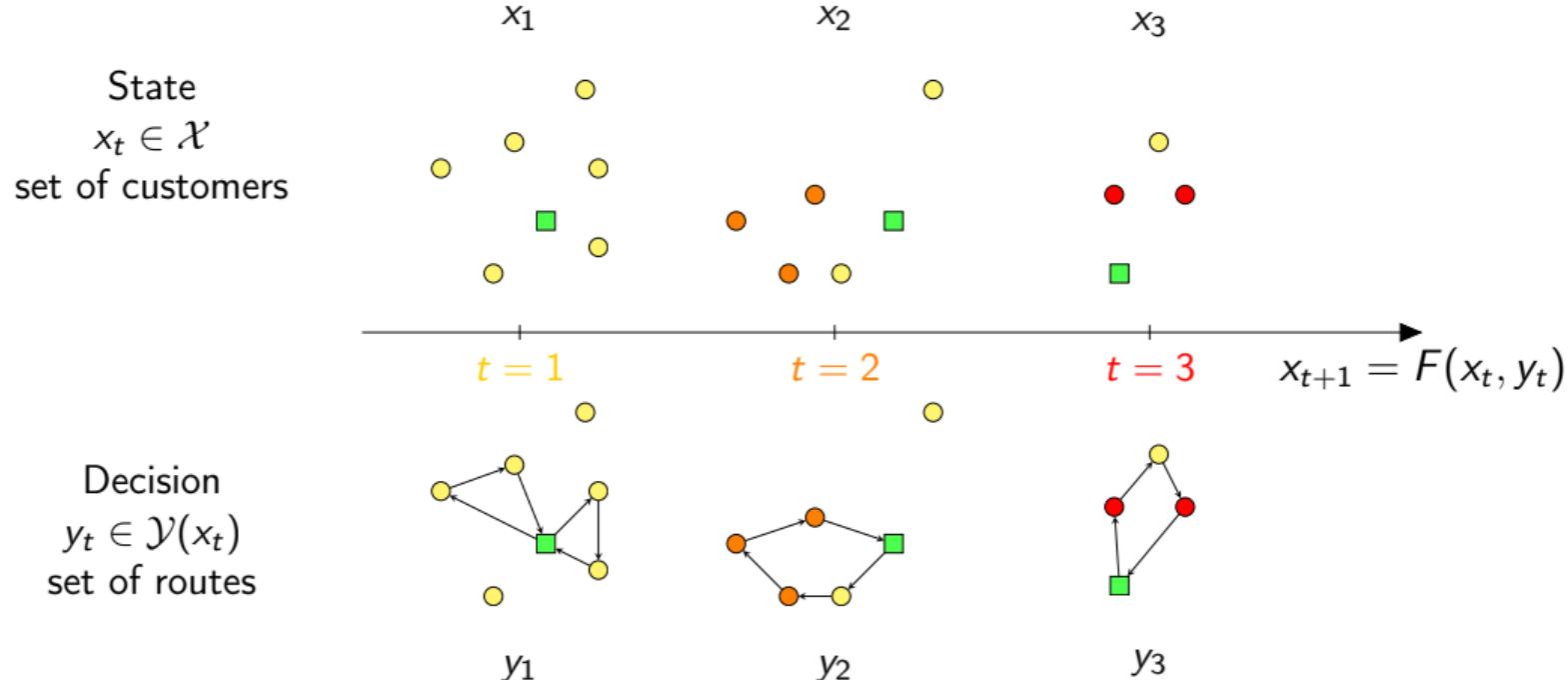
Dynamic Vehicle Routing Problem



Dynamic Vehicle Routing Problem



Dynamic Vehicle Routing Problem



Dynamic VRPTW

A solution of this problem is a **policy**:

$$\pi: \mathcal{X} \rightarrow \mathcal{Y}$$

$$x_t \mapsto y_t$$

Objective: find π^* , serving all customers before end of horizon, and minimizing total cost

$$\pi^* = \arg \min_{\pi} \mathbb{E} \left[\sum_{\text{epochs } t} \text{total cost of routes in decision } y_t = \pi(x_t) \right]$$

Policy that won the EURO-NeurIPS challenge³

³ Léo Baty et al. (Feb. 2024). "Combinatorial Optimization-Enriched Machine Learning to Solve the Dynamic Vehicle Routing Problem with Time Windows". In: *Transportation Science*. issn: 0041-1655. doi: 10.1287/trsc.2023.0107. (Visited on 07/18/2024).

Policy that won the EURO-NeurIPS challenge³

Epoch decisions can be seen as the solution of a Prize

Collecting VRPTW:

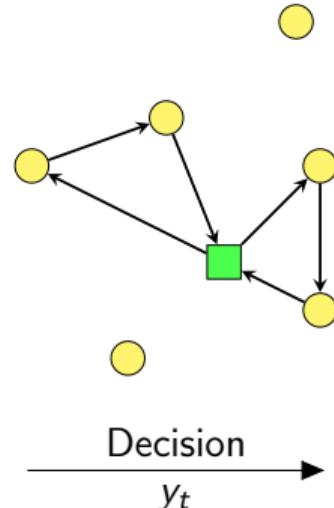
- Serving customers is optional
- Serving customer v gives **prize** θ_v
- **Objective:** max profit = prize – routecost

$$\max_{y \in \mathcal{Y}(x_t)} \underbrace{\sum_{(u,v) \in x_t^2} \theta_v y_{u,v}}_{\text{total prize}} - \underbrace{\sum_{(u,v) \in x_t^2} c_{u,v} y_{u,v}}_{\text{total routes cost}}.$$

- **Algorithm:** Prize Collecting Hybrid Genetic Search

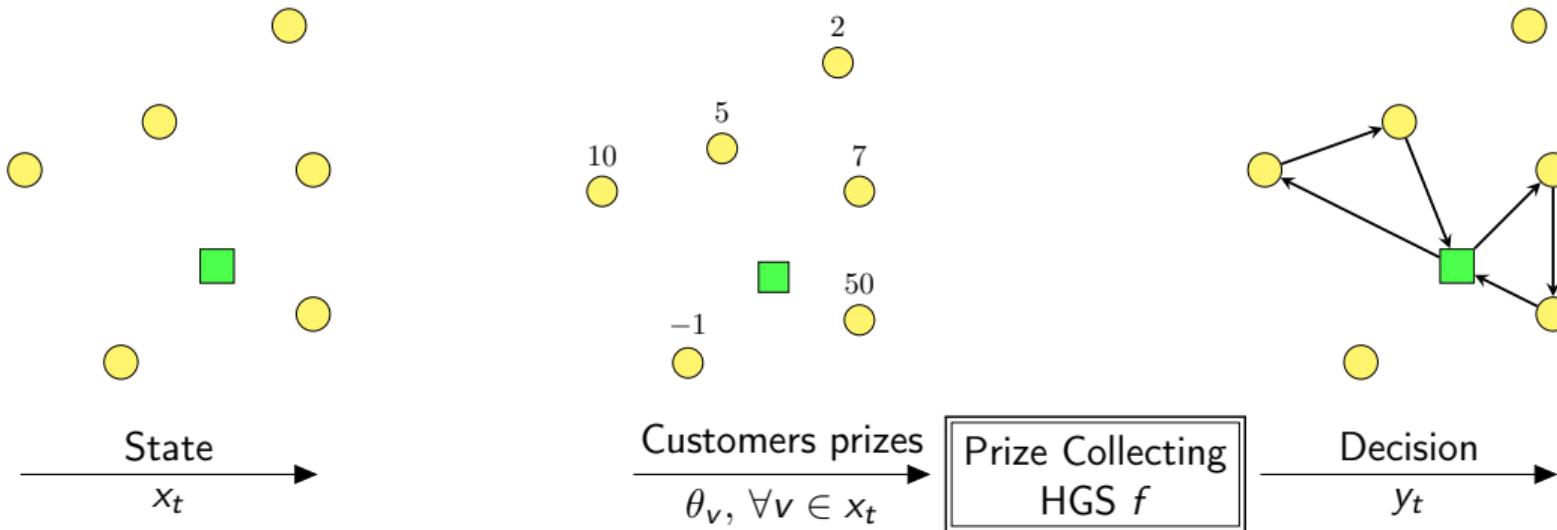
⇒ Combinatorial Optimization layer f

³Léo Baty et al. (Feb. 2024). "Combinatorial Optimization-Enriched Machine Learning to Solve the Dynamic Vehicle Routing Problem with Time Windows". In: *Transportation Science*. issn: 0041-1655. doi: 10.1287/trsc.2023.0107. (Visited on 07/18/2024).



Policy that won the EURO-NeurIPS challenge³

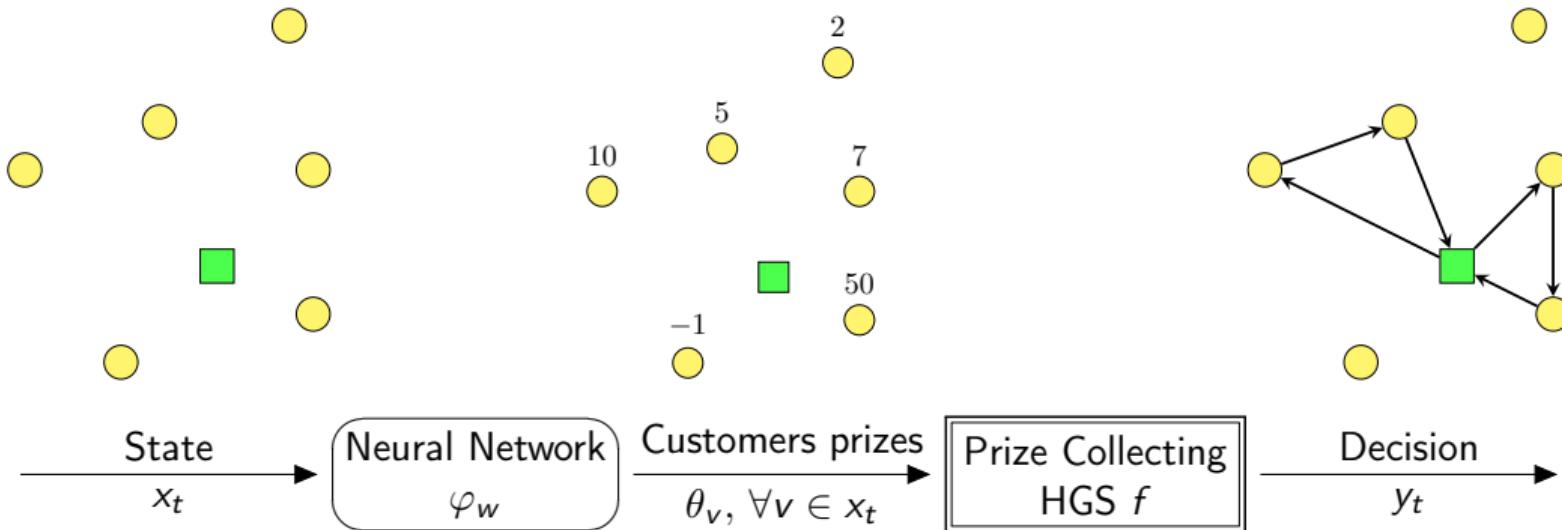
Difficulty: no natural way of computing meaningful prizes



³Léo Baty et al. (Feb. 2024). "Combinatorial Optimization-Enriched Machine Learning to Solve the Dynamic Vehicle Routing Problem with Time Windows". In: *Transportation Science*. issn: 0041-1655. doi: 10.1287/trsc.2023.0107. (Visited on 07/18/2024).

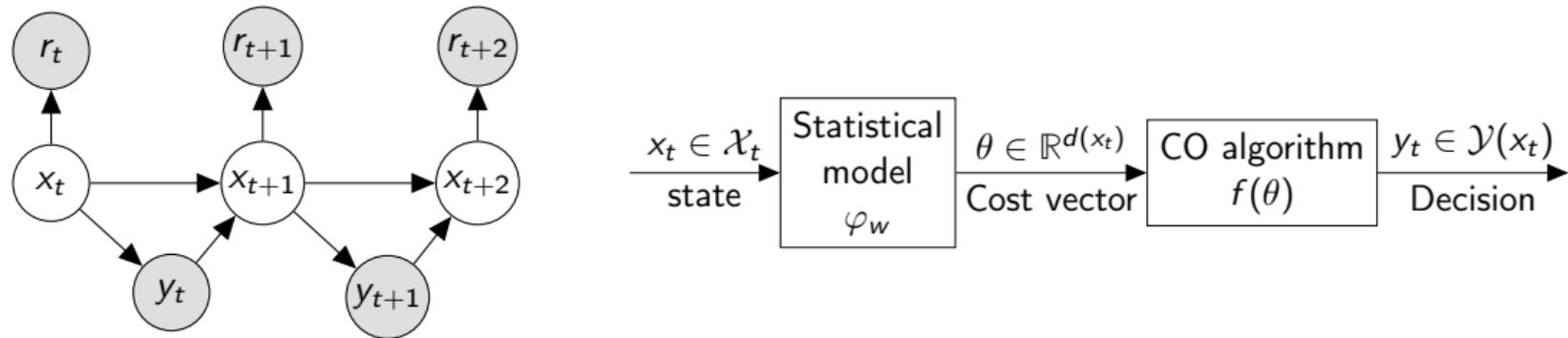
Policy that won the EURO-NeurIPS challenge³

Solution: use a neural network to predict request prizes $\theta = \varphi_w(x_t)$



³Léo Baty et al. (Feb. 2024). "Combinatorial Optimization-Enriched Machine Learning to Solve the Dynamic Vehicle Routing Problem with Time Windows". In: *Transportation Science*. issn: 0041-1655. doi: 10.1287/trsc.2023.0107. (Visited on 07/18/2024).

Policy for multistage stochastic optimization



Neural network with a CO layer: policy for MDPs with large state *and* decision spaces.

$$\min_w \mathbb{E}_\pi \sum_t r_t \quad \text{with} \quad \pi_{w,t} : \mathcal{X}_t \rightarrow \mathcal{Y}_t$$

- 1 Applications in OR and architectures
- 2 Supervised learning for static problems
- 3 Empirical risk minimization for contextual stochastic optimization
- 4 Learning for dynamic problems

Policy encoded by neural networks with CO layers

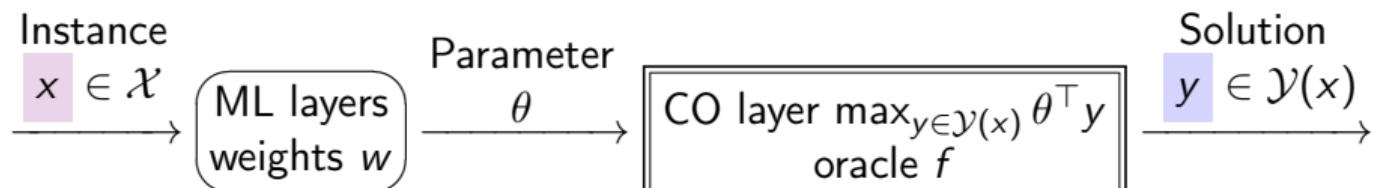
Goal: find a policy π that minimizes

$$\min_{\pi \in \mathcal{H}} \mathbb{E}_{\substack{x \sim \mathbb{P}_x, y \sim \pi(\cdot|x)}} [c^0(x; y)]$$

cost function
 ↓
 instance in \mathcal{X} decision in $\mathcal{Y}(x)$

\mathbb{P}_x unknown but access to x_1, \dots, x_n .

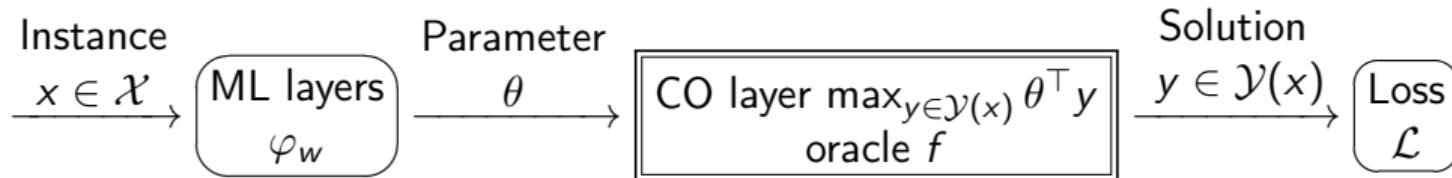
Model choice: we restrict ourselves to policies π_w based on



We thus seek weights w that minimize the risk

$$\min_w \mathbb{E}_{\substack{x \sim \mathbb{P}_x, y \sim \pi_w(\cdot|x)}} [c^0(x; y)]$$

End-to-end learning: two paradigms



Empirical risk minimization

Dataset: $\mathcal{D} = (x_i)_{i \in [N]}$

Learning problem:

$$\min_w \frac{1}{N} \sum_{i=1}^N c^0(x_i; f(\varphi_w(x_i)))$$

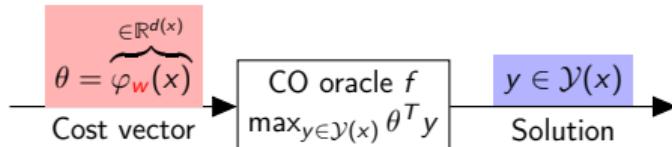
Supervised learning

Dataset: $\mathcal{D} = (x_i, \bar{y}_i)_{i \in [N]}$

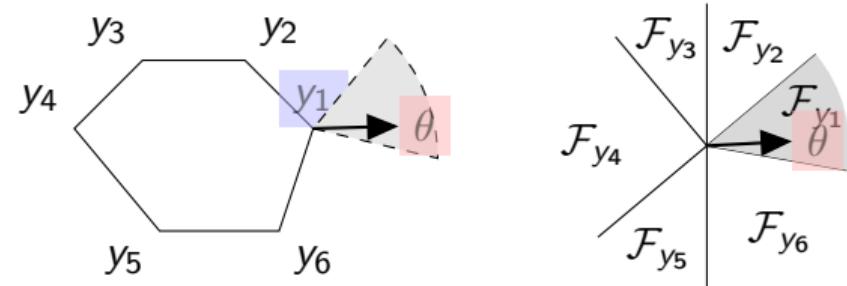
Learning problem:

$$\min_w \frac{1}{N} \sum_{i=1}^N \mathcal{L}(x_i; f(\varphi_w(x_i)), \bar{y}_i)$$

→ We would like both to rely on stochastic gradient descent (SGD)



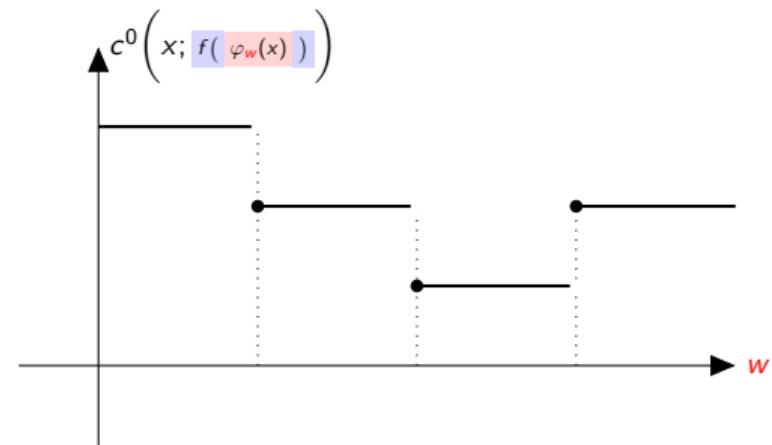
Lack of informative derivatives



Piecewise-constant learning problem

$$\frac{1}{N} \sum_{i=1}^N c^0 \left(x_i; f \left(\varphi_w(x_i) \right) \right)$$

$$\frac{1}{N} \sum_{i=1}^N \mathcal{L} \left(x_i; f \left(\varphi_w(x_i) \right), \bar{y}_i \right)$$

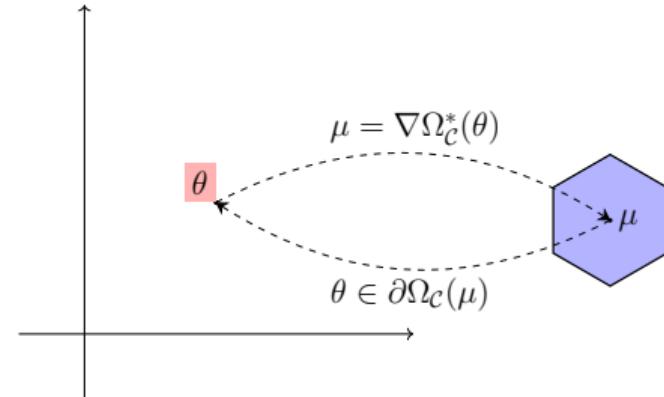


Smoothing by regularization or perturbation

$$\max_{\mu \in \mathcal{C}(x)} \theta^T \mu - \Omega(\mu), \quad \mathcal{C}(x) = \text{conv}(\mathcal{Y}(x))$$

Ex. 1: $\Omega(\mu) = \|\mu\|_2^2 + \mathbb{I}_{\mathcal{C}(x)}(\mu)$

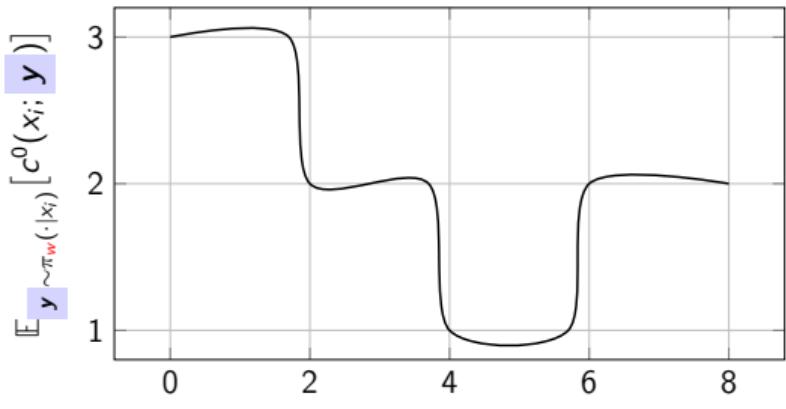
Ex. 2: $\Omega^*(\theta) = \mathbb{E}_{\mathbf{Z}}[\max_{\mu \in \mathcal{C}(x)} (\theta + \varepsilon \mathbf{Z})^T \mu]$



Smoothed learning problem

$$\frac{1}{N} \sum_{i=1}^N \mathbb{E}_{\mathbf{y} \sim \pi_{\mathbf{w}}(\cdot | x_i)} [c^0(x_i; \mathbf{y})]$$

$$\frac{1}{N} \sum_{i=1}^N \mathbb{E}_{\mathbf{y} \sim \pi_{\mathbf{w}}(\cdot | x_i)} [\mathcal{L}(x_i; \mathbf{y}, \bar{y}_i)]$$



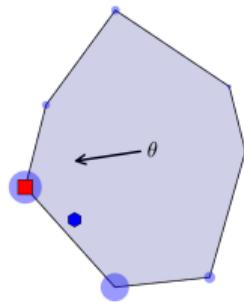
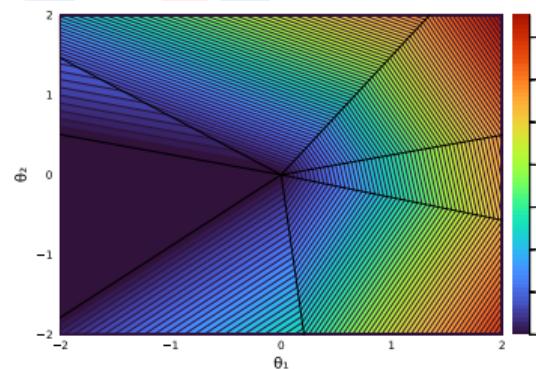
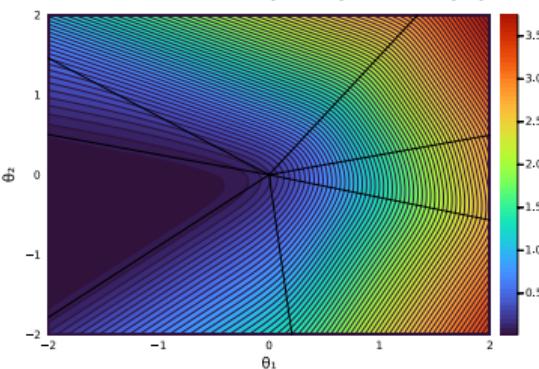
Supervised learning: Fenchel-Young losses⁴

Properties that make SGD tractable

Non-optimality of \bar{y}
as a solution of the
regularized prediction problem

$$\mathcal{L}_\Omega(\theta; \bar{y}) = \overbrace{\max_{y \in \mathcal{C}(x)} (\langle \theta | y \rangle - \Omega(y)) - (\langle \theta | \bar{y} \rangle - \Omega(\bar{y}))}^{\text{Non-optimality of } \bar{y}}$$

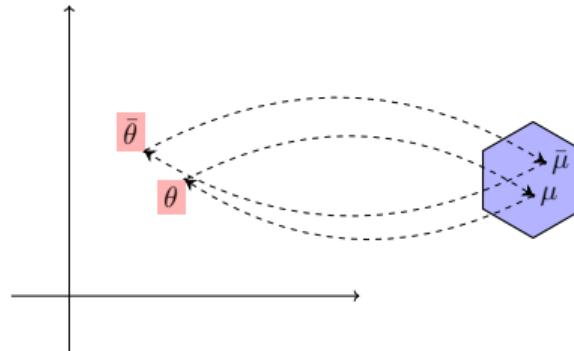
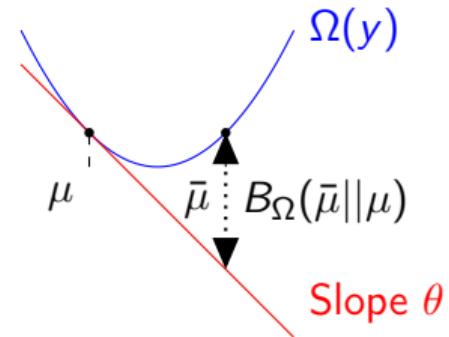
$$\mathcal{L}_\Omega(\theta; \bar{y}) = \Omega^*(\theta) + \Omega(\bar{y}) - \langle \theta | \bar{y} \rangle$$



- $\mathcal{L}_\Omega(\theta; \bar{y}) \geq 0$
- $\mathcal{L}_\Omega(\theta; \bar{y}) = 0 \Leftrightarrow \bar{y} = \nabla \Omega^*(\theta)$
- Convex in θ
- $\nabla_\theta \mathcal{L}_\Omega(\theta; \bar{y}) = \hat{f}_\Omega(\theta) - \bar{y}$

⁴Blondel, Martins, and Niculae 2020.

Fenchel-Young loss as a primal-dual Bregman divergence



$$B_\Omega(\bar{\mu} || \mu) = \Omega(\bar{\mu}) - \Omega(\mu) - \langle \nabla \Omega(\mu) | \bar{\mu} - \mu \rangle \quad \text{and} \quad B_\Omega(\bar{\mu} || \mu) = \mathcal{L}_\Omega(\theta; \bar{\mu}) = B_{\Omega^*}(\theta || \bar{\theta})$$

$$\min_{\mu \in \mathcal{C}} \frac{1}{N} \sum_{i=1}^N B_\Omega(\bar{\mu}_i || \mu) \Leftrightarrow \min_{\theta \in \mathbb{R}^d} \frac{1}{N} \sum_{i=1}^N \mathcal{L}_\Omega(\theta; \bar{\mu}_i)$$

Choice of the regularization: State of the art

$$\nabla_{\theta} \ell_{\Omega}(\theta, \bar{y}) = \nabla \Omega^*(\theta) - \bar{y} = \arg \max_{\mu \in \mathcal{C}} \theta^{\top} \mu - \Omega(\mu)$$

Perturbation (Berthet et al. 2020)

$$\Omega^*(\theta) = \mathbb{E}_{\mathbf{z}} \left[\max_{y \in \mathcal{Y}} (\theta + \mathbf{z})^{\top} y \right]$$

$$\nabla \Omega^*(\theta) = \mathbb{E}_{\mathbf{z}} \left[\arg \max_{y \in \mathcal{Y}} (\theta + \mathbf{z})^{\top} y \right]$$

MonteCarlo estimate of $\nabla \Omega^*(\theta)$:
Sample z_1, \dots, z_k and solve exactly

$$\max_{y \in \mathcal{Y}} (\theta + z_i)^{\top} y$$

Negentropy (e.g., Wainwright, Jordan, et al. 2008)

$$\Omega(\mu) = \min_{q \in \Delta^{\mathcal{Y}}} \left\{ -H(q) : \mathbb{E}_{\mathbf{y} \sim q}[\mathbf{y}] = \mu \right\}$$

$$\nabla \Omega^*(\theta) = \mathbb{E}_{\mathbf{y} \sim p(\cdot | \theta)}[\mathbf{y}]$$

Exact $\nabla \Omega^*(\theta)$ if $\max_{y \in \mathcal{Y}} \theta^{\top} y$ tractable by dynamic programming (Mensch and Blondel 2018)

$$H(q) = - \sum_{y \in \mathcal{Y}} q(y) \log q(y)$$

$$p(y | \theta) = \frac{e^{\theta^{\top} y}}{Z(\theta)} \text{ where } Z(\theta) = \sum_{y \in \mathcal{Y}} e^{\theta^{\top} y}$$

From Simulated Annealing to Metropolis Hasting

Simulated annealing (SA) with neigh. \mathcal{N}

$$\max_{y \in \mathcal{Y}} \theta^\top y$$

Inputs: $\theta \in \mathbb{R}^d$, $(0) \in \mathcal{Y}$, (t_k) , $K \in \mathbb{N}$, \mathcal{N} , q

for $k = 0 : K$ **do**

 Sample a neighbor in $\mathcal{N}(y^{(k)})$:
 $y' \sim q(y^{(k)}, \cdot)$

$$U \sim \mathcal{U}([0, 1])$$

$$\Delta^{(k)} \leftarrow \langle \theta, y' \rangle + \varphi(y') - \langle \theta, y^{(k)} \rangle - \varphi(y^{(k)})$$

$$p^{(k)} \leftarrow \exp(\Delta^{(k)} / t_k)$$

If $U \leq p^{(k)}$, accept move: $y^{(k+1)} \leftarrow y'$

If $U > p^{(k)}$, reject move: $y^{(k+1)} \leftarrow y^{(k)}$

end for

Output: $\hat{y}(\theta) \approx y^{(K)}$

From Simulated Annealing to Metropolis Hasting

Simulated annealing (SA) with neigh. \mathcal{N}

$$\max_{y \in \mathcal{Y}} \theta^\top y$$

is Metropolis Hasting (MH) MCMC for

$$\mathbb{E}_{y \sim p(\cdot | \theta)}[y]$$

where p is the exponential family on \mathcal{Y}

$$p(y|\theta) = e^{\theta^\top y - A(\theta)} = \frac{e^{\theta^\top y}}{Z(\theta)}$$

where $Z(\theta) = \sum_{y \in \mathcal{Y}} e^{\theta^\top y}$ and $A(\theta) = \log Z(\theta)$

Used in the 1980s to study SA convergence

(faigle_convergence_1988; Mitra, Romeo, and Sangiovanni-Vincentelli 1986)

Inputs: $\theta \in \mathbb{R}^d$, $(0) \in \mathcal{Y}$, (t_k) , $K \in \mathbb{N}$, \mathcal{N} , q
for $k = 0 : K$ **do**

Sample a neighbor in $\mathcal{N}(y^{(k)})$:

$$y' \sim q(y^{(k)}, \cdot)$$

$$\alpha(y^{(k)}, y') \leftarrow 1 \text{ (SA) or}$$

$$\alpha(y^{(k)}, y') \leftarrow \frac{q(y', y^{(k)})}{q(y^{(k)}, y')} \text{ (MH)}$$

$$U \sim \mathcal{U}([0, 1])$$

$$\Delta^{(k)} \leftarrow \langle \theta, y' \rangle + \varphi(y') - \langle \theta, y^{(k)} \rangle - \varphi(y^{(k)})$$

$$p^{(k)} \leftarrow \alpha(y^{(k)}, y') \exp(\Delta^{(k)} / t_k)$$

If $U \leq p^{(k)}$, accept move: $y^{(k+1)} \leftarrow y'$

If $U > p^{(k)}$, reject move: $y^{(k+1)} \leftarrow y^{(k)}$

end for

Output: $\hat{y}(\theta) \approx y^{(K)}$ (SA) or

$$\bar{y}_t(\theta) = \mathbb{E}_{\pi_{\theta, t}}[Y] \approx \frac{1}{K} \sum_{k=1}^K y^{(k)} \text{ (MH)}$$

MH gives stochastic gradient, solves regularized problem

$$\underbrace{\mathbb{E}_{\mathbf{y} \sim p(\cdot|\theta)}[\mathbf{y}]}_{\text{Expectation}} = \underbrace{\nabla A(\theta)}_{\substack{\text{Grad. of} \\ \text{logpartition}}}$$

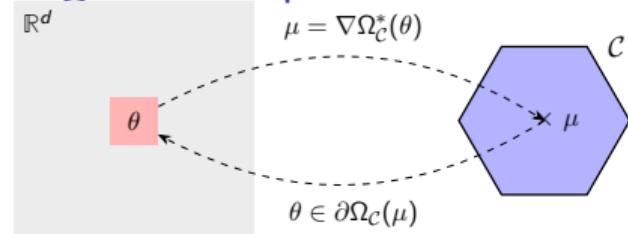
MH gives stochastic gradient, solves regularized problem

$$\underbrace{\mathbb{E}_{\mathbf{y} \sim p(\cdot|\theta)}[\mathbf{y}]}_{\text{Expectation}} = \underbrace{\nabla A(\theta)}_{\text{Grad. of logpartition}}$$

$$= \nabla \overbrace{\log \underbrace{Z(\theta)}_{\sum_{y \in \mathcal{Y}} e^{\theta^\top y}}}^{A(\theta)} = \sum_{y \in \mathcal{Y}} y \underbrace{\frac{e^{\theta^\top y}}{Z(\theta)}}_{p(y|\theta)}$$

MH gives stochastic gradient, solves regularized problem

$$\underbrace{\mathbb{E}_{\mathbf{y} \sim p(\cdot|\theta)}[\mathbf{y}]}_{\text{Expectation}} = \underbrace{\nabla A(\theta)}_{\text{Grad. of logpartition}}$$



Introducing the Fenchel conjugate of A

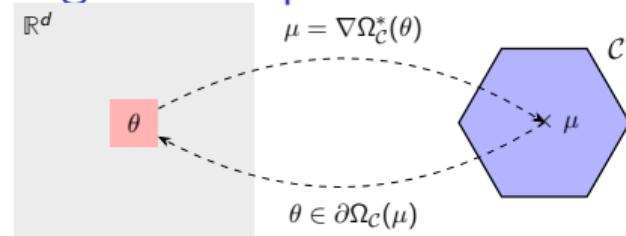
$$\Omega(\mu) \doteq A^*(\mu) = \max_{\theta} \theta^\top \mu - A(\theta)$$

as regularization, , denoting $\mathcal{C} = \text{conv } \mathcal{Y}$, we get

$$\underbrace{\mathbb{E}_{\mathbf{y} \sim p(\cdot|\theta)}[\mathbf{y}]}_{\substack{\text{MH (i.e., SA)} \\ \text{for this} \\ \text{inference problem}}} = \underbrace{\nabla \Omega^*(\theta)}_{\substack{\text{get} \\ \text{stochastic} \\ \text{gradients}}} = \underbrace{\arg \max_{\mu \in \mathcal{C}} \theta^\top \mu - \Omega(\mu)}_{\substack{\text{which are near} \\ \text{optimal solutions of} \\ \text{regularized problem}}}$$

MH gives stochastic gradient, solves regularized problem

$$\underbrace{\mathbb{E}_{\mathbf{y} \sim p(\cdot|\theta)}[\mathbf{y}]}_{\text{Expectation}} = \underbrace{\nabla A(\theta)}_{\text{Grad. of logpartition}}$$



Introducing the Fenchel conjugate of A

$$\Omega(\mu) \doteq A^*(\mu) = \max_{\theta} \theta^\top \mu - A(\theta)$$

as regularization, , denoting $\mathcal{C} = \text{conv } \mathcal{Y}$, we get

$$\underbrace{\mathbb{E}_{\mathbf{y} \sim p(\cdot|\theta)}[\mathbf{y}]}_{\substack{\text{MH (i.e., SA)} \\ \text{for this} \\ \text{inference problem}}} = \underbrace{\nabla \Omega^*(\theta)}_{\substack{\text{get} \\ \text{stochastic} \\ \text{gradients}}} = \underbrace{\arg \max_{\mu \in \mathcal{C}} \theta^\top \mu - \Omega(\mu)}_{\substack{\text{which are near} \\ \text{optimal solutions of} \\ \text{regularized problem}}}$$

Characterization of Ω

$$\begin{aligned} \Omega(\mu) &= -H(p(\cdot|\theta)) \\ &= \min_{q \in \Delta^{\mathcal{Y}}} \left\{ -H(q) : \mathbb{E}_{\mathbf{y} \sim q}[\mathbf{y}] = \mu \right\} \end{aligned}$$

where

$$H(q) = -\sum_{y \in \mathcal{Y}} q(y) \log(q(y)).$$

Classic results on variational inference in exponential families Wainwright, Jordan, et al. 2008

SA as MH with Negentropy

$$\underbrace{\mathbb{E}_{\mathbf{y} \sim p(\cdot|\theta)}[\mathbf{y}]}_{\text{MH (i.e., SA) for this inference problem}} = \underbrace{\nabla \Omega^*(\theta)}_{\text{get stochastic gradients}} = \underbrace{\arg \min_{\mu \in \mathcal{C}} \theta^\top \mu - \Omega(\mu)}_{\text{which are near optimal solutions of regularized problem}}$$

Parameter estimations with training set $\bar{y}_1, \dots, \bar{y}_N$, and $\bar{Y}_N = \frac{1}{N} \sum_{i=1}^N y_i$

$$\hat{\theta}_{n+1} = \hat{\theta}_n + \gamma_{n+1} \left[\overbrace{\bar{Y}_N - \frac{1}{K_{n+1}} \sum_{k=1}^{K_{n+1}} \mathbf{y}^{(n+1, k)}}^{\text{MH estimate}} \right]$$

$\mathbf{y}^{(n+1, k)}$: k -th iterate of MH with temp t , direction $\hat{\theta}_n$, initialized at $\mathbf{y}^{(n+1, 1)} = \mathbf{y}^{(n, K_n)}$

Proposition SGD convergence with MH estimate (Vivier Ardisson, Blondel, P., 2025)

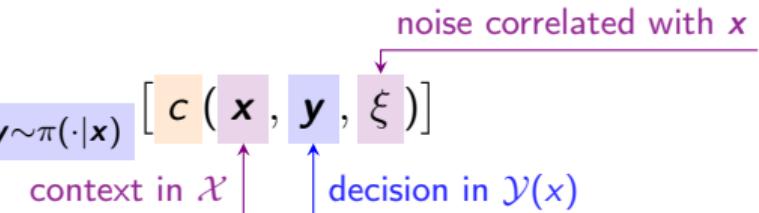
Under some classic assumptions for SGD, $\hat{\theta}_n \xrightarrow{a.s.} \theta_N^*$

- 1 Applications in OR and architectures
- 2 Supervised learning for static problems
- 3 Empirical risk minimization for contextual stochastic optimization
- 4 Learning for dynamic problems

Contextual stochastic combinatorial optimization⁵

Consider the risk

$$\min_{\pi \in \mathcal{H}} \mathcal{R}(\pi) \quad \text{where} \quad \mathcal{R}(\pi) = \mathbb{E}_{(\mathbf{x}, \xi), \mathbf{y} \sim \pi(\cdot | \mathbf{x})} [c(\mathbf{x}, \mathbf{y}, \xi)]$$



Assumptions:

- we have an efficient algorithm to solve

$$\min_{y \in \mathcal{Y}(x)} c(x(\omega), y, \xi(\omega)) + \langle \theta | y \rangle$$

- $\mathcal{Y}(x)$ is finite (but exponentially large)
- we have access to a dataset $\mathcal{D} = (x_i, \xi_i)_{i \in [N]}$

Classic decomposition approaches from stochastic optimization (progressive hedging, L-shaped method) may not scale

⁵Sadana et al. 2024.

Contextual stochastic combinatorial optimization⁵

Consider the risk

$$\min_{\pi \in \mathcal{H}} \mathcal{R}(\pi) \quad \text{where} \quad \mathcal{R}(\pi) = \mathbb{E}_{(\mathbf{x}, \xi), \mathbf{y} \sim \pi(\cdot|\mathbf{x})} [c(\mathbf{x}, \mathbf{y}, \xi)]$$

↑
context in \mathcal{X} ↑
decision in $\mathcal{Y}(\mathbf{x})$

↑
noise correlated with \mathbf{x}

Assumptions:

- we have an efficient algorithm to solve

$$\min_{y \in \mathcal{Y}(x)} c(x(\omega), y, \xi(\omega)) + \langle \theta | y \rangle$$

- $\mathcal{Y}(x)$ is finite (but exponentially large)
- we have access to a dataset $\mathcal{D} = (x_i, \xi_i)_{i \in [N]}$

Classic decomposition approaches from stochastic optimization (progressive hedging, L-shaped method) may not scale

Our Approach: Louis Bouvier et al. (2025). “Primal-dual algorithm for contextual stochastic combinatorial optimization”. In: *arXiv preprint arXiv:2505.04757*

⁵Sadana et al. 2024.

A coordination heuristic

Given a training set $(x_1, \xi_1), \dots, (x_n, \xi_n)$, start with imitation learning

$$\min_w \frac{1}{n} \sum_{i=1}^n \ell(\varphi_w(x_i), \bar{y}_i) \quad \text{where} \quad \bar{y}_i = \arg \min_{y \in \mathcal{Y}(x_i)} c(x_i, y, \xi_i)$$

Then minimize a linear combination of (anticipative) objective and prediction

$$\bar{y}_i = \arg \min_{y \in \mathcal{Y}(x_i)} c(x_i, y, \xi_i) + \kappa \underbrace{(-\varphi_w(x_i)^\top y)}_{\substack{\text{non regularized} \\ \ell(\varphi_w(x_i), y) \text{ constant}}}$$

Then update w

$$\min_w \sum_i \ell(\varphi_w(x_i), y_i)$$

and iterate

A coordination heuristic

Given a training set $(x_1, \xi_1), \dots, (x_n, \xi_n)$, start with imitation learning

$$\min_w \frac{1}{n} \sum_{i=1}^n \ell(\varphi_w(x_i), \bar{y}_i) \quad \text{where} \quad \bar{y}_i = \arg \min_{y \in \mathcal{Y}(x_i)} c(x_i, y, \xi_i)$$

Then minimize a linear combination of (anticipative) objective and prediction

$$\bar{y}_i = \arg \min_{y \in \mathcal{Y}(x_i)} c(x_i, y, \xi_i) + \kappa \underbrace{(-\varphi_w(x_i)^\top y)}_{\substack{\text{non regularized} \\ \ell(\varphi_w(x_i), y) \text{ constant}}}$$

Then update w

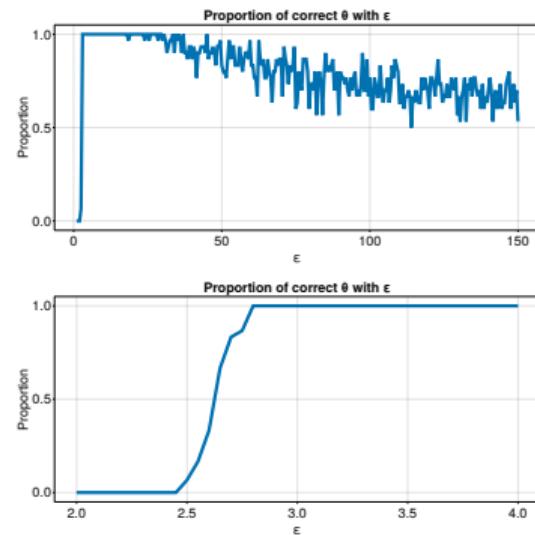
$$\min_w \sum_i \ell(\varphi_w(x_i), y_i)$$

and iterate

which happens to be an exact algorithm

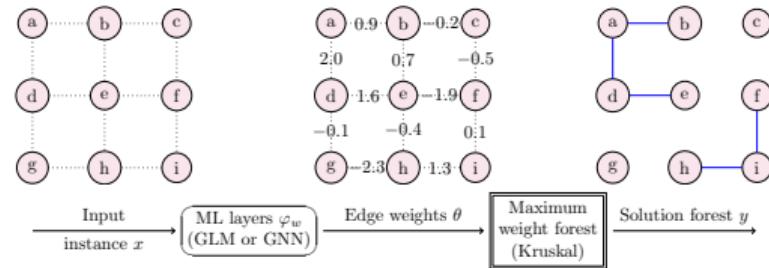
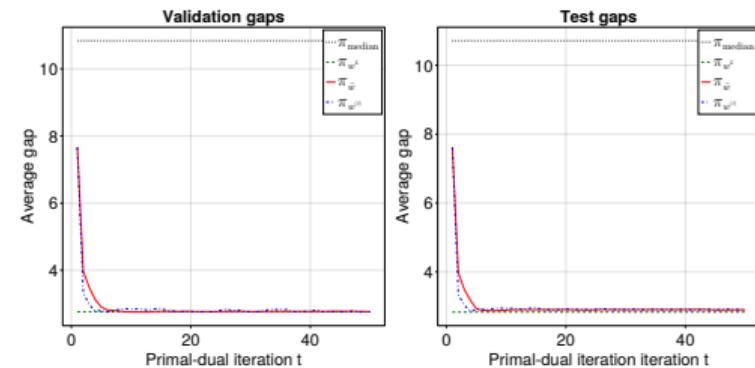
Toy problem

	Scenario ξ_1	Scenario ξ_2	Scenario ξ_3
Solution 0	4	-1	-2
Solution 1	0	0	0



Applications

Two-stage minimum weight spanning tree



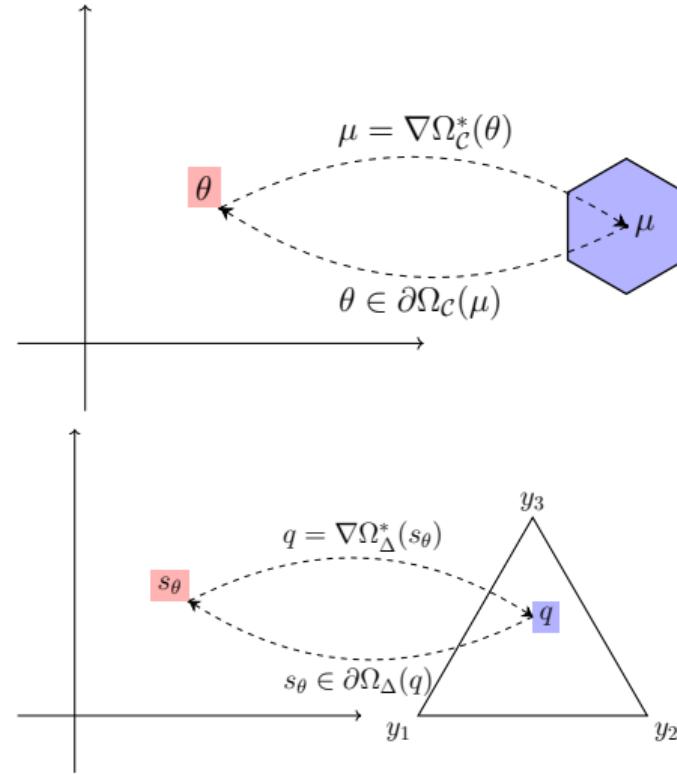
Surrogate problem on the distribution space

$$\min_{y \in \mathcal{Y}} \theta^\top y$$

is equivalent to

$$\min_{q \in \Delta^{\mathcal{Y}}} \mathbb{E}(\theta^\top y | q) = \underbrace{\theta^\top Y q}_{s_\theta^\top}$$

$$Y = (y_1 \mid \dots \mid y_{|\mathcal{Y}|})$$



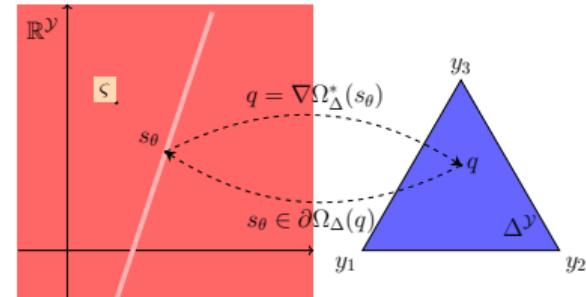
Empirical risk minimization and surrogate problem

Any cost function $c(x, \cdot, \xi)$

- vector γ in $\mathbb{R}^{|\mathcal{Y}|}$, the dual of $\Delta^{\mathcal{Y}}$

Surrogate problem minimizes:

- scenario decisions costs
- scenario decision divergence to policy



$$\begin{aligned}
 \min_{\mathbf{w} \in \mathcal{W}} R_N(\pi_{\mathbf{w}}) &:= \min_{\mathbf{w}} \frac{1}{N} \sum_{i=1}^N \overbrace{\mathbb{E}_{\mathbf{y} \sim \pi_{\mathbf{w}}(\cdot | \mathbf{x}_i)} [c(x_i, \mathbf{y}, \xi_i)]}^{\text{Scenario } i \text{ cost under policy } \pi_{\mathbf{w}}} = \min_{\mathbf{w}} \frac{1}{N} \sum_{i=1}^N \langle \gamma_i | \nabla \Omega_{\Delta(x_i)}^*(Y(x_i)^\top \varphi_{\mathbf{w}}(x_i)) \rangle \\
 \min_{\mathbf{w}, \mathbf{q}_\otimes} \mathcal{S}_N(s_{\mathbf{w}}; \mathbf{q}_\otimes) &:= \min_{\mathbf{w}, \mathbf{q}_\otimes} \frac{1}{N} \sum_{i=1}^N \underbrace{\mathbb{E}_{\mathbf{y} \sim \mathbf{q}_i} [c(x_i, \mathbf{y}, \xi_i)]}_{\text{independent pb per scenario } i} + \underbrace{\kappa \mathcal{L}_{\Omega_{\Delta(x_i)}} (Y(x_i)^\top \varphi_{\mathbf{w}}(x_i); \mathbf{q}_i)}_{\text{coupled by FY loss to policy}}
 \end{aligned}$$

Scenario i cost under policy $\pi_{\mathbf{w}}$
 cost vector $(c(x_i, y, \xi_i))_{y \in \mathcal{Y}}$

Alternating minimization scheme

Surrogate problem

$$\min_{\mathbf{w}, \mathbf{q}_\otimes} \mathcal{S}_N(s_{\mathbf{w}}; \mathbf{q}_\otimes) := \min_{\mathbf{w}, \mathbf{q}_\otimes} \frac{1}{N} \sum_{i=1}^N \mathbb{E}_{\mathbf{y} \sim \mathbf{q}_i} \left[c(x_i, \mathbf{y}, \xi_i) \right] + \kappa \mathcal{L}_{\Omega_{\Delta(x_i)}} \left(Y(x_i)^\top \varphi_{\mathbf{w}}(x_i); \mathbf{q}_i \right)$$

Alternating minimization algorithm

$$q_i^{(t+1)} = \arg \min_{q_i \in \Delta(x_i)} \mathbb{E}_{\mathbf{y} \sim q_i} \left[c(x_i, \mathbf{y}, \xi_i) \right] + \kappa \mathcal{L}_{\Omega_{\Delta(x_i)}} \left(Y(x_i)^\top \varphi_{\bar{\mathbf{w}}^{(t)}}(x_i); q_i \right) \quad (\text{decomposition})$$

$$\bar{\mathbf{w}}^{(t+1)} \in \arg \min_{\mathbf{w} \in \mathcal{W}} \frac{1}{N} \sum_{i=1}^N \mathcal{L}_{\Omega_{C(x_i)}} \left(\varphi_{\mathbf{w}}(x_i); Y(x_i) q_i^{(t+1)} \right) \quad (\text{coordination})$$

Proposition Bouvier, Prunet, Leclère, P., 2025

For well-chosen regularizations, we get tractable alternating minimization updates

High-level strategy: minimizing the surrogate function

Given some technical assumptions / settings restrictions

Theorem *Convergence to surrogate optimum* Bouvier, Prunet, Leclère, P., 2025

Provided some technical assumptions, the (average) iterates $q_{\otimes}^{(t)}$ coincide with those of mirror descent and converge to $\min_{q_{\otimes}} \min_{s_{\otimes}} \mathcal{S}_N(s_{\otimes}, q_{\otimes})$

Proposition *Empirical risk bound*, Bouvier, Prunet, Leclère, P., 2025

$$\theta_{\mathcal{S}, N} \in \arg \min_{\theta} \min_{q_{\otimes}} \mathcal{S}_N(s_{\theta}, q_{\otimes}) \implies \mathcal{R}_N(\theta_{\mathcal{S}, N}) - \min_{\theta} \mathcal{R}_N(\theta) \leq \dots$$

Theorem *Generalization bounds*, Aubin-Frankowski, De Castro, P., Rudi, 2024

In the large data regime, $\mathcal{R}(\theta_{\mathcal{S}, N}) - \min_{\theta} \mathcal{R}(\theta) \leq \dots$

Introducing sparse perturbation over distributions

$$\begin{aligned} F_{\varepsilon, \mathcal{C}}(\theta) &= \mathbb{E}[\max_{y \in \mathcal{Y}} (\theta + \varepsilon \mathbf{Z})^\top y] \\ &= \mathbb{E}[\max_{y \in \mathcal{C}} (\theta + \varepsilon \mathbf{Z})^\top y] \end{aligned}$$

$$\rightarrow \Omega_{\varepsilon, \mathcal{C}} = F_{\varepsilon, \mathcal{C}}^*$$

Proposition Berthet et al. 2020

- defined over \mathbb{R}^d
- strict convexity
- $\nabla_\theta F_{\varepsilon, \mathcal{C}}(\theta) = \mathbb{E}[\arg \max_{y \in \mathcal{C}} (\theta + \varepsilon \mathbf{Z})^\top y]$
- $\text{dom}(F_{\varepsilon, \mathcal{C}}^*) = \mathcal{C}$
- $F_{\varepsilon, \mathcal{C}}^*$ Legendre-type

$$\begin{aligned} F_{\varepsilon, \Delta}(s) &= \mathbb{E}[\max_{y \in \mathcal{Y}} (s(y) + \varepsilon \mathbf{Z})^\top y] \\ &= \mathbb{E}[\max_{q \in \Delta} (s + \varepsilon Y^\top \mathbf{Z})^\top q] \end{aligned}$$

$$\rightarrow \Omega_{\varepsilon, \Delta} = F_{\varepsilon, \Delta}^*$$

Proposition Bouvier et al. 2025

- defined over $\mathbb{R}^{\mathcal{Y}}$
- strict convexity
- $\nabla_s F_{\varepsilon, \Delta}(s) = \mathbb{E}[\arg \max_{q \in \Delta^{\mathcal{Y}}} (s + \varepsilon Y^\top \mathbf{Z})^\top q]$
- $\text{dom}(F_{\varepsilon, \Delta}^*) = \Delta^{\mathcal{Y}}$
- $F_{\varepsilon, \Delta}^*$ Legendre-type

Tractable updates

Using $\Omega_{\varepsilon, \Delta(x)} = F_{\varepsilon, \Delta(x)}(s)^*$

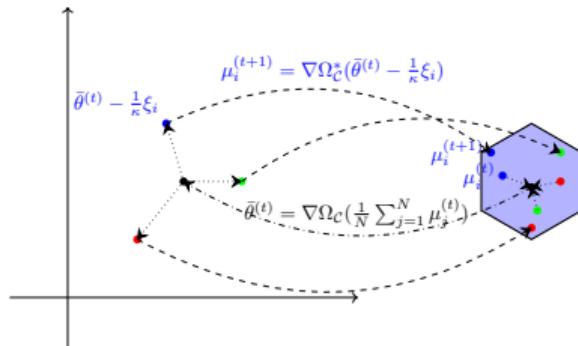
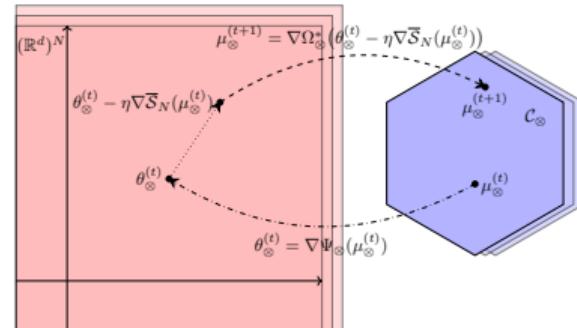
$$\begin{aligned}\mu_i^{(t+1)} &= Y(x_i) \mathbf{q}_i^{(t+1)} \\ &= Y(x_i) \nabla F_{\varepsilon, \Delta(x_i)}(Y(x_i)^\top \varphi_{\bar{w}^{(t)}}(x_i) - \frac{1}{\kappa} \gamma_i) \\ &= \mathbb{E}_{\mathbf{Z}} \left[\arg \min_{y_i \in \mathcal{Y}(x_i)} c(x_i, y_i, \xi_i) - \kappa (\varphi_{\bar{w}^{(t)}}(x_i) + \varepsilon \mathbf{Z})^\top y_i \right]\end{aligned}$$

- Swap integration and derivation
- Danskin's theorem
- Dirac on a vertex

Proposition Bouvier, Prunet, Leclère, P., 2025

In the case $\Omega_{\mathcal{C}(x)} := F_{\varepsilon, \mathcal{C}(x)}^*$ and $\Omega_{\Delta(x)} := F_{\varepsilon, \Delta(x)}^*$ we get tractable approximate alternating minimization updates

Link with mirror descent (simplified)



Theorem Bouvier, Prunet, Leclère, P., 2025

Our iterates coincide with the ones of mirror descent applied to

$$\bar{S}_N(q_{\otimes}) := \min_{s_{\otimes}} S_N(s_{\otimes}; q_{\otimes}) = \frac{1}{N} \sum_{i=1}^N \langle \gamma_i | q_i \rangle + \frac{\kappa}{N} \underbrace{\left[\sum_{i=1}^N \Omega_{\Delta}(q_i) - N \Omega_{\Delta}\left(\frac{1}{N} \sum_{i=1}^N q_i\right) \right]}_{\text{Jensen gap}}$$

with a mirror map Ψ_{\otimes} such that $\Omega_{\otimes} = \Psi_{\otimes} + \mathbb{I}_{\Delta_{\otimes}}$

Bounded non-optimality (in a restricted setting)

$$\mathcal{R}_N(\theta) := R_N(p_{\Omega_\Delta}(\cdot|\theta))$$

$$\underline{\mathcal{S}_N}(\theta) := \min_{q_\otimes \in \Delta_\otimes} \mathcal{S}_N(s_\theta, q_\otimes) \quad \text{and} \quad \theta_{\mathcal{S},N} \in \arg \min_{\theta} \underline{\mathcal{S}_N}(\theta)$$

$$\begin{array}{c} \mathcal{R}_N(\theta_{\mathcal{S},N}) \\ \min_{\theta} \mathcal{R}_N(\theta) \end{array}$$

Theorem Bouvier, Prunet, Leclère, P., 2025

Let $\theta \in \mathbb{R}^d$, provided that $\nabla \Omega_\Delta^*$ is $\frac{1}{L}$ -Lipschitz-continuous with respect to $\|\cdot\|$

$$|\underline{\mathcal{S}_N}(\theta) - \mathcal{R}_N(\theta)| \leq \frac{3}{2NL\kappa} \sum_{i=1}^N \|\gamma_i\|^2$$

cost vector $(c(x_i, y, \xi_i))_{y \in \mathcal{Y}}$

we deduce that

$$\mathcal{R}_N(\theta_{\mathcal{S},N}) - \mathcal{R}_N(\theta_{\mathcal{R},N}) \leq \frac{3}{L\kappa N} \sum_{i=1}^N \|\gamma_i\|^2$$

$\in \arg \min_{\theta} \mathcal{R}_N(\theta)$

$\in \arg \min_{\theta} \underline{\mathcal{S}_N}(\theta)$

Which guarantees can we obtain for the policy returned by our learning algorithm ?⁶

Get back to the $c^0(x, y)$ setting.

Contextual stochastic optimization: given x, ξ , define

$$c^0(y, x) = c(x, y, \xi)$$

$$\min_{\mathbf{w} \in \mathcal{W}} \mathcal{R}_{n\lambda}(h_{\mathbf{w}}) \quad \text{with} \quad \mathcal{R}_{n,\lambda}(h_{\mathbf{w}}) = \frac{1}{n} \sum_{i=1}^n \mathbb{E}_Z \left\{ [c^0(\hat{\mathbf{y}}(\psi_{\mathbf{w}}(X_i) + \lambda Z(X_i)), X_i)] \right\}$$

⁶Pierre-Cyril Aubin-Frankowski et al. (July 2024). *Generalization Bounds of Surrogate Policies for Combinatorial Optimization Problems*. doi: 10.48550/arXiv.2407.17200. arXiv: 2407.17200 [stat]. (Visited on 12/10/2024).

$$\bar{\mathcal{R}} = \mathbb{E} \left[\min_{\mathbf{y} \in \mathcal{Y}(x)} c^0(\mathbf{y}, X) \right]$$

$$\mathcal{R}_t(h_{\mathbf{w}}) = \mathbb{E}_{X, Z} [c^0(\hat{\mathbf{y}}(\psi_{\mathbf{w}}(X) + tZ(X)), X)]$$

$$\mathcal{R}_{n,t}(h_{\mathbf{w}}) = \frac{1}{n} \sum_{i=1}^n \mathbb{E}_Z [c^0(\hat{\mathbf{y}}(\psi_{\mathbf{w}}(X_i) + tZ(X_i)), X_i)]$$

Risks and estimators

$$\mathbf{w}^* = \arg \min_{\mathbf{w} \in \mathcal{W}} \mathcal{R}_0(h_{\mathbf{w}}) \quad \text{opt. pol}$$

$$\mathbf{w}_{n,\lambda} = \arg \min_{\mathbf{w} \in \mathcal{W}} \mathcal{R}_{n,\lambda}(h_{\mathbf{w}}) \quad \text{learn. opt.}$$

$\mathbf{w}_{n,\lambda}^{\text{alg}}$: learning algorithm result

$$0 \leq \mathcal{R}_0(h_{\mathbf{w}_{n,\lambda}^{\text{alg}}}) - \bar{\mathcal{R}} = \underbrace{\mathcal{R}_0(h_{\mathbf{w}_{M,n,\lambda}}) - \mathcal{R}_{\lambda}(h_{\mathbf{w}_{M,n,\lambda}})}_{\text{Pert. bias Theorem}} + \underbrace{\mathcal{R}_{\lambda}(h_{\mathbf{w}_{M,n,\lambda}}) - \mathcal{R}_{n,\lambda}(h_{\mathbf{w}_{M,n,\lambda}})}_{\text{Emp. process Theorem}}$$

$$+ \underbrace{\mathcal{R}_{n,\lambda}(h_{\mathbf{w}_{M,n,\lambda}}) - \mathcal{R}_{n,\lambda}(h_{\mathbf{w}_{n,\lambda}})}_{\text{Alt. min. alg.}} + \underbrace{\mathcal{R}_{n,\lambda}(h_{\mathbf{w}_{n,\lambda}}) - \mathcal{R}_{n,\lambda}(h_{\mathbf{w}^*})}_{\leq 0}$$

$$+ \underbrace{\mathcal{R}_{n,\lambda}(h_{\mathbf{w}^*}) - \mathcal{R}_{\lambda}(h_{\mathbf{w}^*})}_{\text{Emp. process Theorem}} + \underbrace{\mathcal{R}_{\lambda}(h_{\mathbf{w}^*}) - \mathcal{R}_0(h_{\mathbf{w}^*})}_{\text{Pert. bias Theorem}}$$

$$+ \underbrace{\mathcal{R}_0(h_{\mathbf{w}^*}) - \bar{\mathcal{R}}}_{\text{Model bias.}}$$

Theorem Aubin-Frankowski, De Castro, P., and Rudi, 2024

Let $0 \geq 0$ and $\lambda > 0$ be such that $\lambda \geq 0$. Let $\tau \in (0, 1)$. Under conditions detailed later, there exists a constant $C > 0$ that depends only on ε , τ and c^0 such that for any $\mathbf{w} \in \mathcal{W}$ and $n \geq 1$, one has

$$|\mathcal{R}_0(h_{\mathbf{w}}) - \mathcal{R}_{\lambda}(h_{\mathbf{w}})| = C\lambda^{\tau} \text{polylog}(\lambda) \quad (\text{Perturbation bias Theorem})$$

$$|\mathcal{R}_{\lambda}(h_{\mathbf{w}}) - \mathcal{R}_{n,\lambda}(h_{\mathbf{w}})| = \mathcal{O}_{\mathbb{P}}\left(\frac{1}{\lambda\sqrt{n}}\right) \quad (\text{Empirical process Theorem})$$

where $\text{polylog}(\lambda)$ is a polynomial logarithm term.

Optimizing over λ , we get $\mathcal{R}_0(h_{\mathbf{w}_{n,\lambda}^{\text{alg}}}) - \bar{\mathcal{R}} \xrightarrow{n \rightarrow \infty} \mathcal{R}_0(h_{\mathbf{w}^*}) - \bar{\mathcal{R}}$ in the large data regime.

- 1 Applications in OR and architectures
- 2 Supervised learning for static problems
- 3 Empirical risk minimization for contextual stochastic optimization
- 4 Learning for dynamic problems
 - Supervised learning for dynamic problems
 - Structured Reinforcement Learning

1 Applications in OR and architectures

- Contextual stochastic optimization
- Dynamic problems

2 Supervised learning for static problems

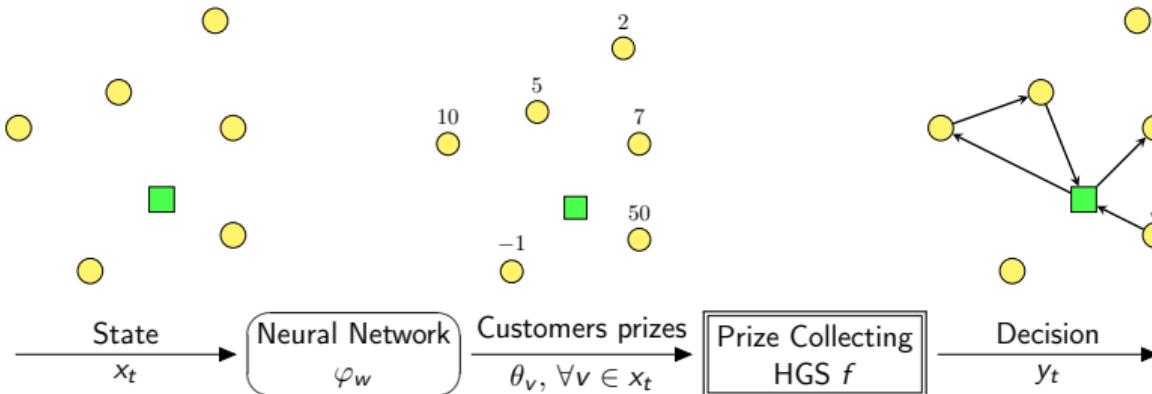
3 Empirical risk minimization for contextual stochastic optimization

4 Learning for dynamic problems

- Supervised learning for dynamic problems
- Structured Reinforcement Learning

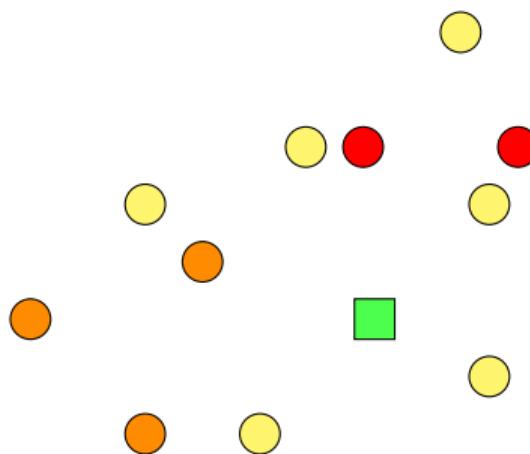
Learning dynamic problem policy

Goal: find parameters w such that our pipeline is a “good” policy.

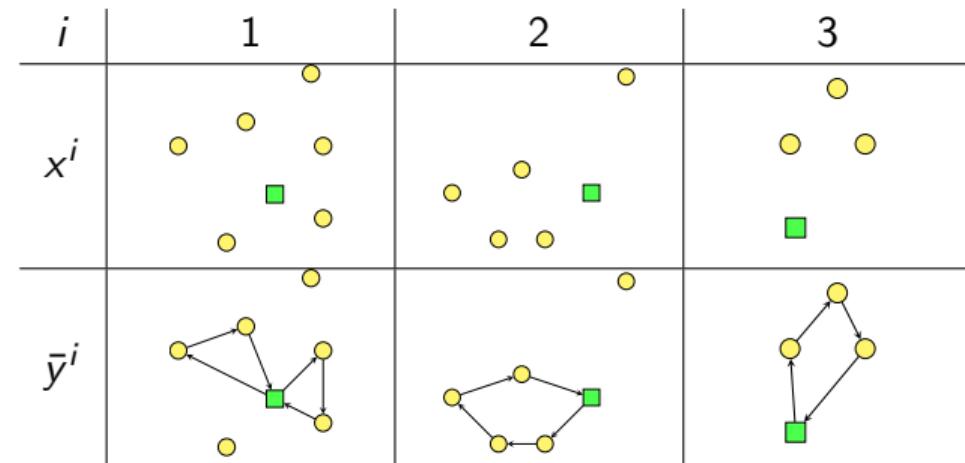


$$\hat{w} = \arg \min_w \frac{1}{n} \sum_{i=1}^n \mathcal{L}(\varphi_w(x^i), \bar{y}^i)$$

Learn to imitate anticipative decisions⁷



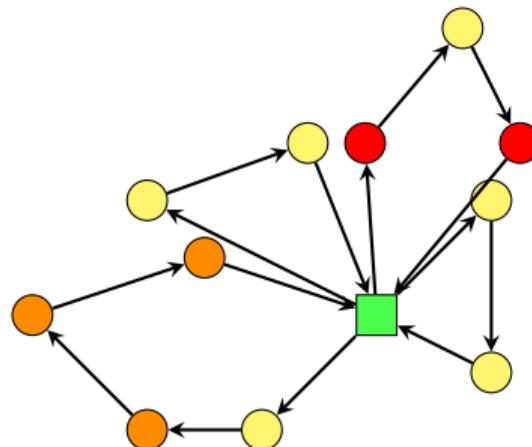
We rebuild the anticipative decisions a posteriori



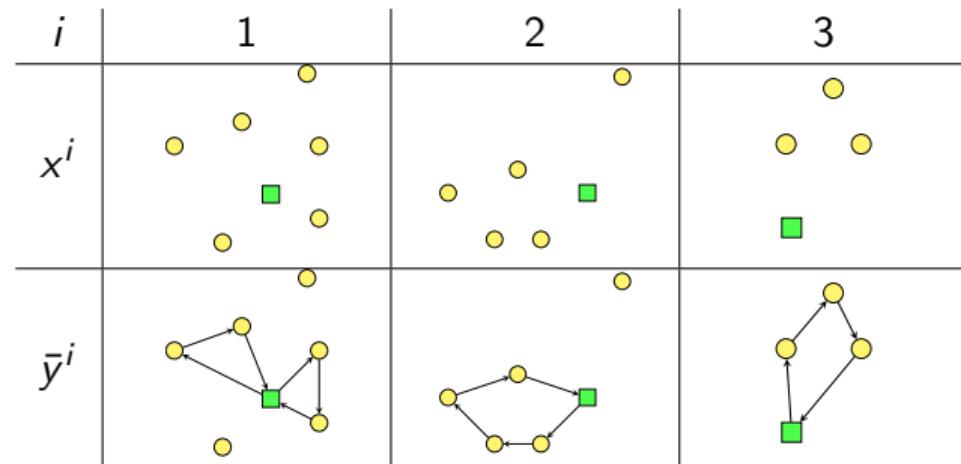
Gives a training set $x_1, y_1, \dots, x_n, y_n$, and we can then formulate the learning problem as minimizing the Fenchel Young loss.

⁷ Léo Baty et al. (Feb. 2024). "Combinatorial Optimization-Enriched Machine Learning to Solve the Dynamic Vehicle Routing Problem with Time Windows". In: *Transportation Science*. issn: 0041-1655. doi: 10.1287/trsc.2023.0107. (Visited on 07/18/2024).

Learn to imitate anticipative decisions⁷



We rebuild the anticipative decisions a posteriori



Gives a training set $x_1, y_1, \dots, x_n, y_n$, and we can then formulate the learning problem as minimizing the Fenchel Young loss.

⁷ Léo Baty et al. (Feb. 2024). "Combinatorial Optimization-Enriched Machine Learning to Solve the Dynamic Vehicle Routing Problem with Time Windows". In: *Transportation Science*. issn: 0041-1655. doi: 10.1287/trsc.2023.0107. (Visited on 07/18/2024).

Additional ingredient needed on other problems⁸

We should solve (an empirical version of)

$$\min_w \mathbb{E}_{X \sim \delta_w} \left[\mathcal{L}(\varphi_w(X), \delta^*(X)) \right]$$

while we solve (an empirical version of)

$$\min_w \mathbb{E}_{X \sim \delta^*} [\mathcal{L}(\varphi_w(X), \delta^*(X))]$$

How to build \mathcal{D} ?

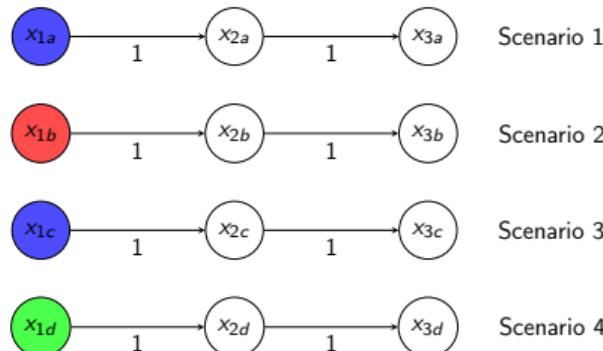
- Several epoch: DAgger $\alpha\delta^* + (1 - \alpha)\delta_w$
- Single epoch: Add states from random policy

Why does it work ? Voting policy

Stage

Stage

Stage 3



- Average across states
- Learning conditional dist. via gen. MLE
- Take mode

⁸Toni Greif et al. (Feb. 2024). *Combinatorial Optimization and Machine Learning for Dynamic Inventory Routing*. arXiv: 2402.04463 [math]. (Visited on 03/04/2024).

1 Applications in OR and architectures

- Contextual stochastic optimization
- Dynamic problems

2 Supervised learning for static problems

3 Empirical risk minimization for contextual stochastic optimization

4 Learning for dynamic problems

- Supervised learning for dynamic problems
- Structured Reinforcement Learning

Single step reinforcement learning

Reinforcement learning setting

$$\min_{\pi \in \mathcal{H}} \mathcal{R}(\pi)$$

$$\text{ where } \mathcal{R}(\pi) = \mathbb{E}_{(\mathbf{x}, \xi), \mathbf{y} \sim \pi(\cdot|\mathbf{x})} [c(\mathbf{x}, \mathbf{y}, \xi)]$$

noise (not observed)

context in \mathcal{X}

decision in $\mathcal{Y}(\mathbf{x})$

Access to **evaluation oracle** for $c(\mathbf{x}, \mathbf{y}, \xi)$.

No **optimization oracle** for $\min_{\mathbf{y} \in \mathcal{Y}(\mathbf{x})} c(\mathbf{x}, \mathbf{y}, \xi)$ or $\min_{\mathbf{y} \in \mathcal{Y}(\mathbf{x})} \mathbb{E}_\xi [c(\mathbf{x}, \mathbf{y}, \xi)]$

Single step reinforcement learning

Reinforcement learning setting

$$\min_{\pi \in \mathcal{H}} \mathcal{R}(\pi)$$

$$\text{where } \mathcal{R}(\pi) = \mathbb{E}_{(\mathbf{x}, \xi), \mathbf{y} \sim \pi(\cdot | \mathbf{x})} [c(\mathbf{x}, \mathbf{y}, \xi)]$$

noise (not observed)

context in \mathcal{X}

decision in $\mathcal{Y}(\mathbf{x})$

Access to **evaluation oracle** for $c(\mathbf{x}, \mathbf{y}, \xi)$.

No **optimization oracle** for $\min_{\mathbf{y} \in \mathcal{Y}(\mathbf{x})} c(\mathbf{x}, \mathbf{y}, \xi)$ or $\min_{\mathbf{y} \in \mathcal{Y}(\mathbf{x})} \mathbb{E}_\xi [c(\mathbf{x}, \mathbf{y}, \xi)]$

Alternating minimization: decomposition step is not tractable anymore

$$\mu_i^{(t+1)} = Y(x_i) \arg \min_{q_i \in \Delta(x_i)} \mathbb{E}_{\mathbf{y} \sim q_i} [c(x_i, \mathbf{y}, \xi_i)] + \kappa \mathcal{L}_{\Omega_{\Delta^{\mathcal{Y}(x_i)}}} (Y(x_i)^\top \varphi_{\bar{w}^{(t)}}(x_i); q_i)$$

$$= \mathbb{E}_{\mathbf{Z}} [\arg \min_{y_i \in \mathcal{Y}(x_i)} c(x_i, y_i, \xi_i) - \kappa (\varphi_{\bar{w}^{(t)}}(x_i) + \varepsilon \mathbf{Z})^\top y_i]$$

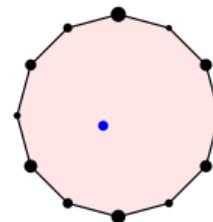
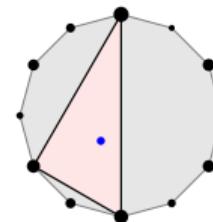
No oracle available

Structured reinforcement learning⁹

Replace $\mathcal{Y}(x_i)$ by $\hat{\mathcal{Y}}_k^{(t)}(x_i)$: k atoms sampled from $p(\mathbf{y}|x_i, w^{(t)})$

$$\begin{aligned}\mu_i^{(t+1)} &= Y(x_i) \arg \min_{q_i \in \Delta(x_i)} \mathbb{E}_{\mathbf{y} \sim q_i} [c(x_i, \mathbf{y}, \xi_i)] + \kappa \mathcal{L}_{\Omega_{\Delta \hat{\mathcal{Y}}_k^{(t)}(x_i)}} (Y(x_i)^\top \varphi_{\bar{w}^{(t)}}(x_i); q_i) \\ &= \text{entr. soft max}_{y_i \in \hat{\mathcal{Y}}_k^{(t)}(x_i)} [\kappa \varphi_{\bar{w}^{(t)}}(x_i)^\top y_i - c(x_i, y_i, \xi_i)] \quad (\text{Entropic regularization}) \\ &= \text{pert. } \mathbb{E}_{\mathbf{Z}} \left[\arg \min_{y_i \in \hat{\mathcal{Y}}_k^{(t)}(x_i)} c(x_i, y_i, \xi_i) - \kappa (\varphi_{\bar{w}^{(t)}}(x_i) + \varepsilon \mathbf{Z})^\top y_i \right] \quad (\text{Perturbation})\end{aligned}$$

Tractable by evaluation of the k elements of $\hat{\mathcal{Y}}_k^{(t)}(x_i)$



⁹Heiko Hoppe et al. (2025). *Structured Reinforcement Learning for Combinatorial Decision-Making*. arXiv: 2505.19053 [cs.LG]. url: <https://arxiv.org/abs/2505.19053>.

Embedding in an actor critic to go multistage

Algorithm 1 Structured Reinforcement Learning

Initialize actor with model φ_w , critic ψ_β and target critic $\psi_{\bar{\beta}}$ networks

for e episodes **do**

Generate trajectories, store and sample transitions j

for j transitions **do**

Perturb $\theta_j = \varphi_w(s_j)$ using $Z \sim N(\theta_j, \sigma_b)$, sample $m \eta_j$, solve $f(\eta_j, s_j)$ for each η_j

Calculate target action $\hat{a}_j = \left(\text{softmax}_{a'_j} \frac{1}{\tau} Q_{\psi_\beta}(s_j, a'_j) \right)$

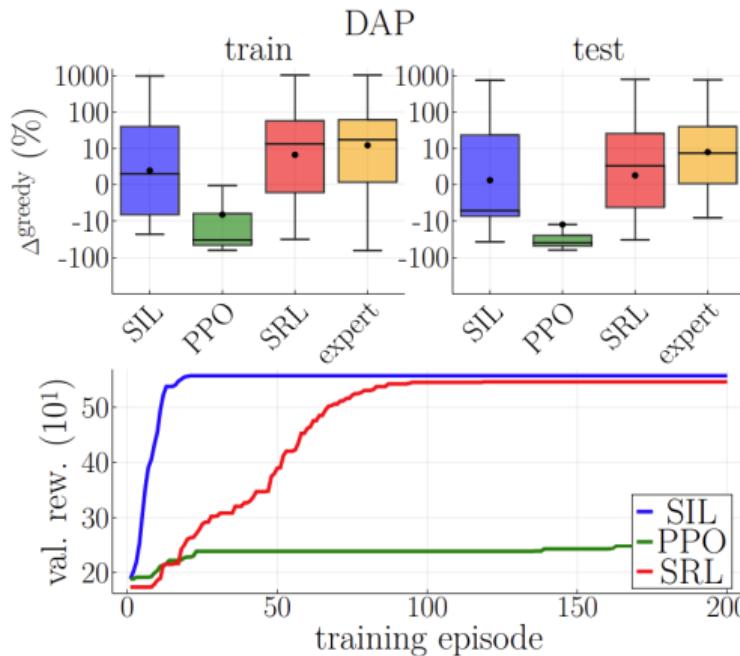
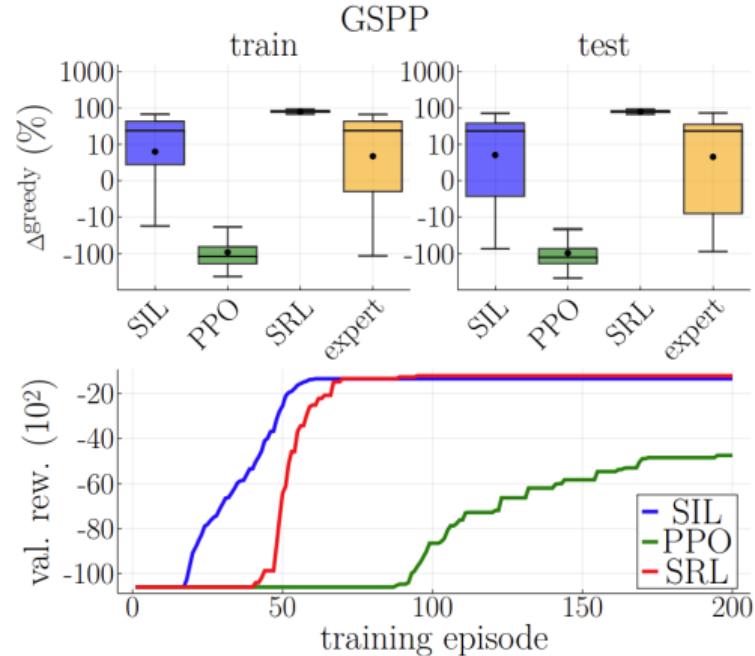
Update actor using $\mathcal{L}_\Omega(\theta; \hat{a})$ ▷ using a second perturbation

Update critic by one step of gradient descent using $J(\psi_\beta) = (Q_{\psi_\beta}(s_j, a_j) - y_j)^2$

end for

end for

Numerical results



Conclusion

Neural network with combinatorial optimization layers improve state of the art

- Contextual Stochastic Optimization (tactic, strategic)
- Dynamic problems (operations)

in combinatorial settings.

Alternating minimization for empirical risk minimization

- Deep learning compatible
- Leads to practically better policies
- Convergence to minimum of empirical risk minimization problem
- Generalization guarantees (approximation ratio in probability)
- Can be turned into an RL algorithm

<https://github.com/JuliaDecisionFocusedLearning>

Combinatorial, convex, stochastic optimization, statistical learning.

References |

- Aubin-Frankowski, Pierre-Cyril et al. (July 2024). *Generalization Bounds of Surrogate Policies for Combinatorial Optimization Problems*. doi: [10.48550/arXiv.2407.17200](https://doi.org/10.48550/arXiv.2407.17200). arXiv: 2407.17200 [stat]. (Visited on 12/10/2024).
- Baty, Léo et al. (Feb. 2024). “Combinatorial Optimization-Enriched Machine Learning to Solve the Dynamic Vehicle Routing Problem with Time Windows”. In: *Transportation Science*. issn: 0041-1655. doi: [10.1287/trsc.2023.0107](https://doi.org/10.1287/trsc.2023.0107). (Visited on 07/18/2024).
- Berthet, Quentin et al. (2020). “Learning with differentiable perturbed optimizers”. In: *Advances in neural information processing systems* 33, pp. 9508–9519.
- Blondel, Mathieu, André F. T. Martins, and Vlad Niculae (2020). “Learning with Fenchel-Young Losses”. In: *Journal of Machine Learning Research* 21.35, pp. 1–69.
- Bouvier, Louis et al. (2025). “Primal-dual algorithm for contextual stochastic combinatorial optimization”. In: *arXiv preprint arXiv:2505.04757*.

References II

- Dalle, Guillaume et al. (July 2022). *Learning with Combinatorial Optimization Layers: A Probabilistic Approach*. eprint: 2207.13513.
- Donti, Priya, Brandon Amos, and J. Zico Kolter (2017). “Task-Based End-to-end Model Learning in Stochastic Optimization”. In: *Advances in Neural Information Processing Systems*. Vol. 30. Curran Associates, Inc. (Visited on 07/24/2024).
- Greif, Toni et al. (Feb. 2024). *Combinatorial Optimization and Machine Learning for Dynamic Inventory Routing*. arXiv: 2402.04463 [math]. (Visited on 03/04/2024).
- Hoppe, Heiko et al. (2025). *Structured Reinforcement Learning for Combinatorial Decision-Making*. arXiv: 2505.19053 [cs.LG]. url: <https://arxiv.org/abs/2505.19053>.
- Mensch, Arthur and Mathieu Blondel (2018). “Differentiable dynamic programming for structured prediction and attention”. In: *International Conference on Machine Learning*. PMLR, pp. 3462–3471.

References III

- Mitra, Debasis, Fabio Romeo, and Alberto Sangiovanni-Vincentelli (1986). “Convergence and Finite-Time Behavior of Simulated Annealing”. In: *Advances in Applied Probability* 18.3, pp. 747–771. issn: 0001-8678. doi: 10.2307/1427186. url: <https://www.jstor.org/stable/1427186>.
- P., A. (Apr. 2021). “Learning to Approximate Industrial Problems by Operations Research Classic Problems”. In: *Operations Research*.
- Poganić, Marin Vlastelica et al. (Sept. 2019). “Differentiation of Blackbox Combinatorial Solvers”. In: *International Conference on Learning Representations*. (Visited on 07/22/2024).
- Sadana, Utsav et al. (Mar. 2024). “A Survey of Contextual Optimization Methods for Decision-Making under Uncertainty”. In: *European Journal of Operational Research*. issn: 0377-2217. doi: 10.1016/j.ejor.2024.03.020. (Visited on 07/12/2024).

References IV

- Wainwright, Martin J, Michael I Jordan, et al. (2008). “Graphical models, exponential families, and variational inference”. In: *Foundations and Trends® in Machine Learning* 1.1–2, pp. 1–305.