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Why Non-Decision-Focused Learning Breaks Workflows

IDEAL WORKFLOW (Decision-Focused)

T |
Online Client ML Predictor Predicted Trays CVSP Solver Ideal Routes
Basket (Neural Network) (Accurate Count) (Optimal Routing) (Efficient Delivery)

BROKEN WORKFLOW (Prediction Error, Not Decision-Focused)

ALopA
m B _> _>
200900) ) '

Online Client ML Predictor Predicted Trays CVSP Solver
Basket (Neural Network) (Slight Under- (Fills Truck to
prediction) Max Capacity)

...these dumb
engineers don't
know how to
count trays!
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oy | The Data-Driven Revolution in Operations Research

OR algorithms are embedded in data-driven
workflows

Exploit data to tame uncertainty
® More Efficient: Optimize resource
allocation
® More Robust: Handle unexpected
disruptions
® More Sustainable: Reduce waste and
empty miles / handle Sustainable Energies

Separating learning from decision can break
worklows

Axel Parmentier Recent trends in COAML
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® Pure ML fails on Combinatorial Optimization
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Value in OR comes from decreasing marginal costs

Stochastic VSP_ Yake

—— Ib sce: 50
—— ubsce: 50

® exsce: 50

v flow reg: 0.001 sce: 50
fcg-bh reg: 0.001 sce: 50

T
102

T
103

® OR researchers tend to focus on CO to make algorithms scale

Axel Parmentier

Recent trends in COAML

February 2, 2026,

4/54



oy | B The Trap: Predict-then-Optimize
Learning algorithms ignore
First estimate the statistical model application
Statistical
xekXx 0 € RIX) Training set (x1,61), ..., (Xn,0,)
. > model > L Ege 9_ 1,V1), y \Xn>, Vn
instance data 0 Parameters oss L(6,0)
w

Learning problem

Then solve the (stochastic) CO problem

min % > L{pw(xi), i)

9 € RI() Oy ey pat
»( algorithm ———»
Parameters £(6) Solution

Small prediction errors can lead to
catastrophic decisions
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ppppp “Eombinatorial Optimization Augmented Machine Learning
xeX Statistical 0 € RYX) | CO algorithm | ¥ € Y(x)
: model —
instance Cost vector f(0) Solution
Pw
data
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b | BEESRbinatorial Optimization Augmented Machine Learning

xeX

instance
data

Statistical
model

Pw

0 ¢ RIX)
Cost vector

CO algorithm
f(0)

Solution

Trained by decision focused learning min LS Llpw(xi), 7).

Axel Parmentier
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(6

o) vey

Kruskal alg ¢—e
for span.
—

tree ex

=
yeY(x) y € y(;l‘)

February 2, 2026,

y € Y(x)

6/54



INSTITUT
POLYTECHNIQUE
VAV DE PARIS

PONTS

@ Applications in OR and architectures
Contextual stochastic optimization
Dynamic problems
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i Settings and architectures
Multistage o ) ® EURO NeurlPS
stochastic o ° & - challenge 2022.

[e] o
optimization | . Baty et al. 2024;

0
c 1 o

o o ® Greif et al. 2024

State " Neural k«zt»\ork‘ Requests prizes Epoch routes
ot L Pu 0,, Vv € m

OB ORO) @09 (-020 ®
Contextual @O0 @ 15@-130 O—@

01 —04 01 T Donti, Amos,
StOChaStIC @ @ @—23@13@ @ ° 0 and K0|ter 2017,

imizati Wput (N Tayers | _ g weights 0| M solugion forest
Optlmlzatlon W@Jﬁ “*(‘;gf:ﬁj]j:{;ﬂ _— DaIIe et aI. 2022

Pogancic et al.

Shortest path ("o ) 2019, Berthet
et al. 2020
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@ Applications in OR and architectures
Contextual stochastic optimization
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g | Resilience: Stochastic Vehicle Scheduling Problem
| |
 slack | ¢p = vehicle cost + E(propagated delay cost)

FN e
S GRS o) o
g wEQ veP
Reduce costs dues to delay propagation along rotations

min E cpzy

Pep
Zyp =1 Vv
Pav
yp € {07 1}
Challenges ® No tractable moment formulation
Even with simplest ® SAA does not scale (exact |V| < 80, heuristics |V| < 400)

delay models . o .
Y e Cannot afford more than a single deterministic resolution
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Decision aware learning for Contextual Stochastic VSP

HOoSO K

time time time
StoVSP GLM) Edge weights VSP flow Vehicle routes Loss
instance Pw 04, Va € A Linear Program function

Excellent performance on large scale instances!

Enables being contextual

LA, P. (Apr. 2021). “Learning to Approximate Industrial Problems by Operations Research Classic
Problems”. In: Operations Research; Guillaume Dalle et al. (July 2022). Learning with Combinatorial

Optimization Layers: A Probabilistic Approach. eprint: 2207 .13513.
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e | Contextual stochastic combinatorial optimization

. . . . 2
Contextual stochastic optimization problem noise correlated with x

v
7r;r'|€|9rl73(7r) where R(m) = E( X 6y [c(x,y,8)]

context in XT Tdecision in Y(x)

Assumptions:

® we have an efficient algorithm to solve

ygj?x) c(x(w),y,&(w)) + (Oly)

® )(x) is finite (but exponentially large)

® we have access to a dataset D = (x;,&;)ien

2Utsav Sadana et al. (Mar. 2024). “A Survey of Contextual Optimization Methods for
Decision-Making under Uncertainty”. In: European Journal of Operational Research. issn: 0377-2217.

doi: 10.1016/j.ejor.2024.03.020. (Visited on 07/12/2024).
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@ Applications in OR and architectures

Dynamic problems
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State
Xt € X
set of customers

Decision

Yt € y(Xt)
set of routes

Axel Parmentier

Dynamic Vehicle Routing Problem

X1
o
o
o o
=
o
o
t=2 t=3 Xer1 = F(xe, yr)
o
o
y1
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State
Xt € X
set of customers

Decision

Yt € y(Xt)
set of routes

Axel Parmentier

Dynamic Vehicle Routing Problem

X1 X2
o o
0
e o
®
5| ® =
o
o ® ©
t=2 t=3 Xer1 = F(xe, yr)
o o
Y1 Y2
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State
Xt € X
set of customers

Decision

Yt € y(Xt)
set of routes

Axel Parmentier

Dynamic Vehicle Routing Problem

X1 X2 X3
@] O
@) @)
O O
@ [} [ ]
O @ ]
O
O @ O O
t=2 t=3 Xer1 = F(xe, yr)
@] O
O Q:‘
y1 Y2 y3
Recent trends in COAML February 2, 2026, 14/54



0 B Dynamic VRPTW

A solution of this problem is a policy:

T X =Y
Xt = Yt

Objective: find 7*, serving all customers before end of horizon, and minimizing total
cost

7 = argminE Z total cost of routes in decision y; = 7(x)

g epochs t

Axel Parmentier Recent trends in COAML February 2, 2026, 15/54



Policy that won the EURO-NeurIPS challenge®

O O
O
O O
O
O
O O
State Decision
Xt Yt

3|éo Baty et al. (Feb. 2024). “Combinatorial Optimization-Enriched Machine Learning to Solve the
Dynamic Vehicle Routing Problem with Time Windows". In: Transportation Science. issn: 0041-1655.

doi: 10.1287/trsc.2023.0107. (Visited on 07/18/2024).
Axel Parmentier Recent trends in COAML February 2, 2026, 16/54
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Policy that won the EURO-NeurlPS challenge?

Epoch decisions can be seen as the solution of a Prize

Collecting VRPTW: o
® Serving customers is optional
® Serving customer v gives prize 0,
® QObjective: max profit = prize — routecost

maXx E OvYuv — § CuvYu,v -
V)EX2

yc} X
2 (u,v)ex?

O

total routes cost Decision
Yt

t

total prize

® Algorithm: Prize Collecting Hybrid Genetic Search

= Combinatorial Optimization layer f

3|éo Baty et al. (Feb. 2024). “Combinatorial Optimization-Enriched Machine Learning to Solve the
Dynamic Vehicle Routing Problem with Time Windows". In: Transportation Science. issn: 0041-1655.
doi: 10.1287/trsc.2023.0107. (Visited on 07/18/2024).
Recent trends in COAML
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Policy that won the EURO-NeurIPS challenge®
Difficulty: no natural way of computing meaningful prizes
O 2 O
O
O 5
10 @) 7
O O O o
[ T
O -1 O
O O O
State Customers prizes | prize Collecting Decision
Xt 0,, Vv € x; HGS f Yt

3|éo Baty et al. (Feb. 2024). “Combinatorial Optimization-Enriched Machine Learning to Solve the
Dynamic Vehicle Routing Problem with Time Windows". In: Transportation Science. issn: 0041-1655.

doi: 10.1287/trsc.2023.0107. (Visited on 07/18/2024).
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Policy that won the EURO-NeurIPS challenge®
Solution: use a neural network to predict request prizes 6 = ¢, (x¢)
O 2 O
O
O 5
10 O 7
O O O o
u 0 5o
O -1 O
O O O

State Neural Network| Customers prizes | prize Collecting Decision
— _ —_—
Xt Pw 0,, Vv € x; HGS f Yt

3|éo Baty et al. (Feb. 2024). “Combinatorial Optimization-Enriched Machine Learning to Solve the
Dynamic Vehicle Routing Problem with Time Windows". In: Transportation Science. issn: 0041-1655.

doi: 10.1287/trsc.2023.0107. (Visited on 07/18/2024).
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s

Xt € Xt
— >
@ state

Statistical
model

Pw

9 € Rd0x)

Cost vector

CO algorithm
f(0)

Policy for multistage stochastic optimization

ye € Y(xt)
—

Decision

Neural network with a CO layer: policy for MDPs with large state and decision spaces.

mmin E. Z re with Tw,t - Xt = Ve
t

Axel Parmentier Recent trends in COAML
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@ Supervised learning for static problems
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@ W T e . .
o | e Policy encoded by neural networks with CO layers

Goal: find a policy 7w that minimizes

. 3 .
TI;'nGI';'r-]lE x~Px , y~7(-|x) [C (X . 4 )]

instance in X’ decision in Y(x)

Px unknown but access to xi, ..., Xp.
Model choice: we restrict ourselves to policies m,, based on

Instance Solution
Parameter

_ Kk M'_— layers 0 CO layer max, ey (x) 6"y y €Y
weights w oracle f

We thus seek weights w that minimize the risk

mMi/n E Py |y (-[x) [co (x vy )]

Axel Parmentier Recent trends in COAML February 2, 2026, 19/54
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End-to-end learning: two paradigms

Instance Parameter Solution

x € X (ML layers 0 CO layer max, ¢y (x) 0Tyl Y € V(x)_(Loss
Pw oracle f L

Empirical risk minimization Supervised learning
Dataset: D = (x;)ie[n] Dataset: D = (xi, ¥i)ie[n]
Learning problem: Learning problem:

1L, -
nN;c (X,-;f(gow(x,-))) Z:: (X,, ow(xi)), yl)

— We would like both to rely on stochastic gradient descent (SGD)

Axel Parmentier Recent trends in COAML February 2, 2026, 20/54
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€RI(x)

—
0= (ﬂW(X )
Cost vector

CO oracle f
max, cy(x) 0Ty

y € Y(x)

Solution

Piecewise-constant learning problem

AI,Z (s #C o) )

/ilzNzﬁ(X/; F( owlx) )7}7/)

Axel Parmentier

Recent trends in COAML

Lack of informative derivatives

ACO (X; f( Pw(x) ))

\
<

February 2, 2026, 21/54



@S INSTITUT
& ’,'o POLYTECHNIQUE

/s DE PARIS

i | Smoothing by regularization or perturbation

max 07 u—Q(n), C(x) = conv (Y(x)) p= V(o)

nec(x) 9
*\\\
Ex. 1: Q(p) = [ |5+ lepo( 1) \‘é\éb’(z;’(;;j/

Ex. 2: Q*(0) = Ez[max,cc(x)( 0 +cZ) " ]

Smoothed learning problem

— 3 i
x 0. 5
N,;Eywwux;) [°Cxs ) = of |
1< _ i
NE_:Eyww(wx,-)[ﬁ(X“ v 3] w1 | | | ]

0 2 4 6 8
Axel Parmentier Recent trends in COAML February 2, 2&6, 22/54



Supervised learning: FencheI—Young losses*

Properties that make SGD tractable

° Lqo(f;y) >0
E(Hy) 0& y=VQ*0)

EQ(9:7)=y€C(X)(<9!y Q(y)) (01ly)—Q(y))

La(0:;y)=2"(0)+Qy) - (9|y> vz:( ) ()—y

;

ii“

Axel Parmentier Recent trendsin COAML ~  February2,2026, @ 23/54
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o | P EEEEnchel-Young loss as a primal-dual Bregman divergence

Slope 6

Ba(illi) = Q) — Q) — (VQ(u)li — u) and  Bo(flli) = La(6; i) = Ba-(6]19)

Axel Parmentier

N N
1 _ 1 .
min >~ Bo(jiil|n) < min ;:1 Lao(; i)

i=1

Recent trends in COAML February 2, 2026,
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o | @R Choice of the regularization: State of the art
Vola(0,7) = VQ'(0) — 7 = argmax ' — Q(u)
nel

Perturbation (Berthet et al. 2020) Negentropy (e.g., Wainwright, Jordan, et al. 2008)
Q*(0) = E,[ max(6 + z)" — i _ . _
() [yey( ) Y] Qu) [min, { H(q): Ey~qly] u}
* _ T %
v (0) = [ar%En;)ax(O +2)'y] VQ*(6) = Eyepi)ly]
MonteCarlo estimate of VQ*(0): Exact VQ*(0) if r;1€a)>}< 0"y tractable by dynamic
Sample zy, ..., z, and solve exactly programming (Mensch and Blondel 2018)
max (6 + z; T H(q) = — |
max(0+2i) y (a) yezyq(” oga(y)
eeTy T
p(y|0) = where Z(0) = Z e?

Z(G) yYeyY

Axel Parmentier Recent trends in COAML February 2, 2026, 25/54
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Simulated annealing (SA)

T
max 6
yey Y

Axel Parmentier

From Simulated Annealing to Metropolis Hasting

with neigh. N/
Inputs: €RY, (0)€), (t), KEN, N, q

for k=0: K do
Sample a neighbor in NV(y():
y' ~aq(®,
U ~U([0,1])
A (0, y") +o(y') = (0, y) — oy )
plk) exp (AR /)

If U< ptk), accept move: yk+1)
If U> ptk), reject move: y(k+1) « y(k)
end for
Output: K)

y(0) ~ y

~
~

Recent trends in COAML February 2, 2026, 26/54
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From Simulated Annealing to Metropolis Hasting
Simulated annealing (SA) with neigh. A/

Inputs: 0€RY, (0)€Y, (t), KEN, N, q

max 6y for k=0: K do
ey Sample a neighbor in NV(y():
. . . yl ~ q (y(k) .)
is Metropolis Hasting (MH) MCMC for ’
aly® )y 1 (SA) or
Epr(.|9)[y] Cy(y(k) y') < % (MH)
U~ U(o,1])
where p is the exponential family on AR — (0, y" ) +o(y)— (0, y®)) — o(y()
k

p) oy, y")exp (AW /1)

0Ty (k) . (kL1) /
_ 0Ty—A@) _ € If U< pl™, accept move: y —y
plyl0) =e ~ Z(0) If U> ptk), reject move: y(k+1) « y(k)
end for
where Z(6) = 3" €'Y and A(6) = log Z(6) Output: y(0) %y(’“ (SA) or
yey ve(0) =Ex,  [Y] = % Zk ;% (MH)

Used in the 1980s to study SA convergence

(faigle convergence 1988; Mitra, Romeo, and Sangiovanni-Vincentelli 1986)
Axel Parmentier Recent trends in COAML February 2, 2026, 26/54
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o | ®FITH gives stochastic gradient, solves regularized problem

Ey~p(~|6) [y] = VA(Q)
———— ~—

Expectation Grad. of
logpartition

Axel Parmentier Recent trends in COAML
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& s' POLYTECH U

o | 2 EHENTH gives stochastic gradient, solves regularized problem

= VA0
Ey~p(ipylyl = VA(0) A(0)
Expectation |og,§3ft';§2n = Vlog Z

yey \.\/_/
0Ty
Z\/F} € (y ())

Axel Parmentier Recent trends in COAML February 2, 2026, 27/54



88 | BEENy gives stochastic gradient, solves regularlzed problem

Ey~p(i0)ly] = VA(0)
——— ~——

Expectation Grad. of -
logpartition .-

Introducing the Fenchel conjugate of A
Q(u) = A" (1) = max ' jn — A(0)
as regularization, , denoting C = conv)), we get

Eyp(io)ly] = VQ*(0) = arg max 07— Q)
N— —

pec
MH (i.e., SA) get
for this stochastic which are near
inference problem gradients optimal solutions of

regularized problem

Axel Parmentier Recent trends in COAML February 2, 2026,
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88 | BEENy gives stochastic gradient, solves regularlzed problem

Eypio)ly]l = VA(0) | 45 V®) c
N——— ~—— =7
Expectation Grad. of 0
logpartition S ]
0 e o0e(n)
Introducing the Fenchel conjugate of A Characterization of Q
Qu) = A*(1) = max 8" — A(9) Q(u) = —H(p(10))
= min { —H(9): Ey~gly] = 1}
as regularization, , denoting C = conv)), we get qepY y~a
* here
E,oniioly] = VQ*(0) = argmaxd’ 1 — Q(p) w
EALG LTINS S At S H(q) = — X q(y)log(q())-
MH (i.e., SA) get yeY
for this stochastic which are near

gradients optimal solutions of

regularized problem
Classic results on variational inference in exponential families Wainwright, Jordan, et al. 2008

Axel Parmentier Recent trends in COAML February 2, 2026, 27/54
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g | SA as MH with Negentropy
T
Ey~p(io)lyl = VQ*(0) =argminf p — Q(p)
—_—— N—— nel
MH (i-e. SA) stocg}?atlstic hich
inference moblem  Eradients optimal solutions of

regularized problem

Parameter estimations with training set y1,...,yn, and Yy = % ZlNzl Vi

MH estimate
Knt1 y(Mt1K): K th iterate of MH
0ni1 =00+ vn+1 | YN — Z y(n+1.4) with temp t, direction 6,
Knt1 (5 initialized at y("t11) = y(nKn)

Proposition SGD convergence with MH estimate (Vivier Ardisson, Blondel, P., 2025)]

Under some classic assumptions for SGD, 9An 22 oy J

Axel Parmentier Recent trends in COAML February 2, 2026, 28/54
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g | Contextual stochastic combinatorial optimization®
Consider the risk noise correlated with x
12
7r;r'|€|9rl73(7r) where R(7) = E( ) VR [c(x,y,¢&)

context in XT Tdecision in Y(x)

Assumptions:
® we have an efficient algorithm to solve

[ min c(x(w),y,&(w)) + (Oly)

® )(x) is finite (but exponentially large)

® we have access to a dataset D = (x;,§;)ic[n
Classic decomposition approaches from stochastic optimization (progressive hedging,
L-shaped method) may not scale

5Sadana et al. 2024.

Axel Parmentier Recent trends in COAML February 2, 2026, 30/54
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g | Contextual stochastic combinatorial optimization®
Consider the risk noise correlated with x
12
7r;r'|€|9rl73(7r) where R(7) = E( ) VR [c(x,y,¢&)

context in XT Tdecision in Y(x)

Assumptions:

® we have an efficient algorithm to solve

min c(x(w),y,&(w)) + (0
,min € (x(w), &) + {6ly)

® )(x) is finite (but exponentially large)

® we have access to a dataset D = (x;,§;)ic[n
Classic decomposition approaches from stochastic optimization (progressive hedging,
L-shaped method) may not scale

Our Approach: Louis Bouvier et al. (2025). “Primal-dual algorithm for contextual

ion”. In: arXiv preprint arXiv:2505.04757
®Sadana et al. 2024.

Axel Parmentier Recent trends in COAML February 2, 2026, 30/54



@ ORI . . . .
s | YRR A coordination heuristic

Given a training set (x1,&;), ..., (xn,&n), start with imitation learning
1 n
min — E é(gpw(x,-),)'/,-) where y; = argmin c(x;, y, &)
X n .
i=1 yeY(xi)

Then minimize a linear combination of (anticipative) objective and prediction

yi = argminc(xi,y,&) + K (_SOW(Xi)TY)
yeY(xi) .
non regularized

£(pw(x;),y)constant

Then update w

min Z C(pw(xi), yi)
and iterate

Axel Parmentier Recent trends in COAML February 2, 2026, 31/54
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G | A A coordination heuristic

Given a training set (x1,&;), ..., (xn,&n), start with imitation learning

1 n
min*ze(@w(xi)a}_’i) where  y; = arg min c(x;, y, &)
X n 1 yeY(x;)

Then minimize a linear combination of (anticipative) objective and prediction

yi = argminc(xi,y,&) + K (_SOW(Xi)TY)
yeY(xi) .
non regularized

£(pw(x;),y)constant

Then update w

mmi/n Z ﬂ(gow(x,-), y,-)

and iterate

which happens to be an exact algorithm
Axel Parmentier Recent trends in COAML February 2, 2026, 31/54
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Toy problem

Scenario & Scenario &  Scenario &3
Solution 0 4 -1 -2
Solution 1 0 0 0

Proportion of correct  with €

Proportion
@

00
[ 50 100 150
€
Proportion of correct  with €
1.0
§
£
205
13
a
00
20 25 30 35 40

Axel Parmentier

Recent trends in COAML

Applications

Two-stage minimum weight spanning tree

® @ ©® (@09 @ﬂ.z@ ©) ° ©
® @ © @O  O—@ G
®-O i

—0.1 —0.4 0.1

®<2..‘5® 1.3 @

Maximum

Input Edge weights 6 A Solution forest
_ BT VORI T L || weight forest || —o——0n TR Y,
instance x (Kruskal)
Validation gaps Test gaps
10 10
™ m
g® g e
g |l 5 ||
g || g ||
26 l 2 6 |
< | <
4 k 4 k
0 20 40 0 20 40

Primal-dual iteration t Primal-dual iteration iteration t
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Surrogate problem on the distribution space
1= V()
mind 'y C
yey 9{\' :
is equivalent to 689()
S c( i
min E(0Ty|q)=0"Y
min B0 yla) =8¢ Yaq

-
)

= ()

Axel Parmentier Recent trends in COAML
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q= V(o)
So r,—"’/‘ T ~
¥ A
s €3QA(Q)
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Any cost function c(x, -, &)

e vector v in RV, the dual of AY
Surrogate problem minimizes:

® scenario decisions costs

® scenario decision divergence to policy

Scenario i cost
under policy m,

N
. 1
MI;T’II)I;]\} RN(TI'W) =min N Zl EyNﬂW(.|XI.) [ C (x,-,y,§, :|

N
’J?g) N Z Ey~q |: ¢ (Xia y, 5')} tK LQA(X,) (Y(Xi)TQOW(Xi); qi)

Empirical risk minimization and surrogate problem

N

Z 71 [V ) (Y () T ()

cost vector (c(xi,¥,&1)) ey

. 1
min Sy(sw;gg) :==m
w,q® w 1
i=
independent pb
per scenario i
Axel Parmentier Recent trends in COAML

coupled by FY
loss to policy
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ey | Alternating minimization scheme
Surrogate problem

w,q®

N
: R 3 T .
min Sy(sw; 9e) = W N i—1 Ey~a [C(Xia}'afi)] + KLy, (Y(Xi) ow(Xi); qi)

Alternating minimization algorithm

q§t+1) =argminEy g, [c(x,-,y, 5,-)] + kLo, (Y(X")T‘Pv‘v“) (xi); q,-) (decomposition)
qi€A(x;)
RS (t+1)
_ (t+1) L 3. N (tH o
w € a;/gerwn N ;EQCM <<pw(x,), Y (xi)g; ) (coordination)

Proposition Bouvier, Prunet, Leclére, P., 2025]

For well-chosen regularizations, we get tractable alternating minimization updates ]

Axel Parmentier Recent trends in COAML February 2, 2026, 35/54
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" efsT High-level strategy: minimizing the surrogate function

Given some technical assumptions / settings restrictions
(iTheorem Convergence to surrogate optimum Bouvier, Prunet, Leclére, P., 2025

(t)

Provided some technical assumptions, the (average) iterates g’ concide with those
of mirror descent and converge to min mins, Sn(sw, 9w)
e

’_[Proposition Empirical risk bound, Bouvier, Prunet, Leclére, P., 2025]

Os.n € argminminSy(sp, ) = Rn(bsn) — main Rn(d) <...
9 d®

(_[Theorem Generalization bounds, Aubin-Frankowski, De Castro, P., Rudi, 2024]

In the large data regime, R(0s ) — ming R(6) <

Axel Parmentier Recent trends in COAML February 2, 2026, 36/54
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Introducing sparse perturbation over distributions

F.c(0) = E[max(6 + EZ)Ty]
yey

=E 0+ez)"
[max(0 +2) y]

*)QEC:F*C

/IProposition Berthet et al. 2020]

(.

defined over RY
strict convexity

VoF.c(0) =

Elarg max,cc(0 +2Z)y]

dom(Fr.)=C
FZc Legendre-type

J

Fea(s) = Elmax(s(y) +eZ )"y

=E y'z)"
[Teag(s +eY ' Z) q]

— Qe,A = F:A
/_[Proposition Bouvier et al. 2025]

® defined over RY
® strict convexity

L4 vsFE,A(S) =
Elargmax,cav(s +eY ' 2Z)7q]

e dom(F7,) =AY

® FZ Legendre-type

Axel Parmentier
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g | Tractable updates

USing QE,A(X) = F&,A(X)(S);‘<

D = ¥ (x) g

® Swap integration and derivation

1
= Y(x)VFe a0 (Y0) @ (x) — el ) e Danskin's theorem
= Ez[arg min ¢ (X,',y,',g,') — li(gpv—v(r)(x,') —+ &‘Z)Ty,-] ® Dirac on a vertex

yi€Y(xi)

Proposition Bouvier, Prunet, Leclére, P., 2025]

In the case Q¢ = F;C(X) and Qp(y) = F;A(X) we get tractable approximate
alternating minimization updates

Axel Parmentier Recent trends in COAML February 2, 2026, 38/54
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e Link with mirror descent (simplified)

(RO HGTT=vadd nvsy(u;:’n

ut (t+1) _ VIZ (U‘” 1 2

0% — VS () e~

60— 1g .
=
L Sl , ZSE
=V S -

© — ol |0
0 = vy

(_[Theorem Bouvier, Prunet, Leclere, P., 2025]

Our iterates coincide with the ones of mirror descent applied to

Sn(ge) == minS(spi 9e) = Z vilai) + {ZQA(CI:‘) - ’VQA(% Z q;)]

Jensen gap

with a mirror map W such that Qg = Vg + 1a,,

(. J

Axel Parmentier Recent trends in COAML February 2, 2026, 39/54



o | @ Bounded non-optimality (in a restricted setting)
Ri(0) :=Ru (pa, (16) ) Rv(Os.n) |-~
Sn(0) ::q@r’ryg Sn (se, q®) and fsn € argomin@(H) ming Ry(0) |-----

’_[Theorem Bouvier, Prunet, Leclére, P., 2025]

Let 6 € RY, provided that VQ is {-Lipschitz-continuous with respect to || - |

2
Su(6) ~ R(6)] < 5o anu

we deduce that € argmin, Sn(6)
2
Rn(Osn ) —Rn(Orn) W;HWH
€ argmin, Ry (0) J

Axel Parmentier Recent trends in COAML February 2, 2026, 40/54



=1 "Which guarantees can we obtain for the policy returned by our

learning algorithm 7°

Get back to the c%(x, y) setting.

Contextual stochastic optimization: given x, &, define

Oy, x) = c(x,y.€)

min Rn)\(hw) with Rn,)\(hw) = % Z EZ{ [CO(Y(ww(Xi) + )\Z(X,')), X,)]}
i=1

wew

®Pierre-Cyril Aubin-Frankowski et al. (July 2024). Generalization Bounds of Surrogate Policies for
Combinatorial Optimization Problems. doi: 10.48550/arXiv.2407.17200. arXiv: 2407 .17200
[stat]. (Visited on 12/10/2024).
Axel Parmentier Recent trends in COAML February 2, 2026,
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TUT
TTTTTTTTT

Risks and estimators

. 0 N .
E[yg}?x)c (.V»X)] w* = arfer)r)\;n Ro(hw) opt. pol
Re(hw) = EX,Z[CO()A/(f/Jw(X) + tZ(X))7X)] wpy = argminRpx(hy)  learn. opt.

1 n X weWw
Ronit(hw) = - Z Ez [CO(Y(@Z’w(Xi) + tZ(X;)),X;)} wsl§ . learning algorithm  result
i=1 ’

0< Ro(hwalg) -R = RO(hWM,n,)\) - Rz\(hWM,n,)\) + R)\(hWM,n,A) - RH,A(hWM,n,A)

nA

TV
Pert. bias Theorem Emp. process Theorem

+ Rna)‘(hwl\//tn,k) - RnyA(hWn,)\) + Rny)\(hwn,)\) - Rn’)\(hW*)

J/

Alt. min. alg. <0
+ Roa(hw+) — Ra(hw+) + Ra(hw+) — Ro(hw+)
Emp. process Theorem Pert. bias Theorem
+ Ro(hw+) — R

Model bias.
Axel Parmentier Recent trends in COAML February 2, 2026, 42/54




(_[Theorem Aubin-Frankowski, De Castro, P., and Rudi, 2024]

Let 0 > 0 and A > 0 be such that A > 0. Let 7 € (0,1). Under conditions detailed
later, there exists a constant C > 0 that depends only on ¢, 7 and ¢ such that for
any w € W and n > 1, one has

|Ro(hw) — Ra(hw)|= CATpolylog(\) (Perturbation bias Theorem)
[RA(hw) = R (b= Op

(Empirical process Theorem)

)

where polylog(\) is a polynomial logarithm term.

. J

Optimizing over A, we get Ro(h, 1) — R — Rolhy+) — R in the large data regime.
nA

n—oo
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O Learning for dynamic problems
Supervised learning for dynamic problems
Structured Reinforcement Learning
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Learning dynamic problem policy

PONTS

Goal: find parameters w such that our pipeline is a “good” policy.

O 2 O
O
O 5
10 O 7
O O s
@) -1 @)

O @) O
State Neural Network) Customers prizes |[pyize Collecting Decision
Xt Pw 0y, Vv € x¢ HGS f Yt

1
N . i i
W = arg min — E L(ow(x"),¥")
w n« 1
=
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& oE PaRIS

Gives a training set xi, y1, - .

© O

Learn to imitate anticipative decisions

7

We rebuild the anticipative decisions a posteriori

®

O
o
O .
)7I

as minimizing the Fenchel Young loss.

Léo Baty et al. (Feb. 2024). “Combinatorial Optimization-Enriched Machine Learning to Solve the
Dynamic Vehicle Routing Problem with Time Windows". In: Transportation Science. issn: 0041-1655.
doi: 10.1287/trsc.2023.0107. (Visited on 07/18/2024).

Axel Parmentier
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& oE PaRIS

Gives a training set xi, y1, - .

/ :

Learn to imitate anticipative decisions

We rebuild the anticipative decisions a posteriori

7

i

y

as minimizing the Fenchel Young loss.

Léo Baty et al. (Feb. 2024). “Combinatorial Optimization-Enriched Machine Learning to Solve the
Dynamic Vehicle Routing Problem with Time Windows". In: Transportation Science. issn: 0041-1655.
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Additional ingredient needed on other problems®
Why does it work 7 Voting policy
We should solve (an empirical version of) Stage 1 Stage 2 Stage 3
min Ex-s, [£(0w(X), 5°(X)] ® e
w
‘ 1 @ 1 X3b Scenario 2
while we solve (an empirical version of)
. 1 @ 1 X3¢ Scenario 3
min E [c( (X) 5*(X)}
XN(S* ()OW )
w @ 1 @ 1 X3d Scenario 4
How to build D? ® Average across states
e Several epoch: DAgger ad* + (1 — a)dy, ® Learning conditional dist. via
e Single epoch: Add states from random policy gen. MLE

e Take mode

8Toni Greif et al. (Feb. 2024). Combinatorial Optimization and Machine Learning for Dynamic

Inventory Routing. arXiv: 2402.04463 [math]. (Visited on 03/04/2024).
Axel Parmentier Recent trends in COAML February 2, 2026, 48/54
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Single step reinforcement learning

Reinforcement learning setting noise (not observed)

v
min R(mw) where R(7)= E( %) VR [c(x,y,¢)]

context in XT Tdecision in YV(x)

Access to evaluation oracle for ¢(x,y,¢).
No optimization oracle for min,cy ) c(x, y, ) or min,cy(x) E¢ [c(x,y,€)]

Axel Parmentier Recent trends in COAML February 2, 2026, 50/54
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rogs | Single step reinforcement learning

Reinforcement learning setting noise (not observed)

7rrr'nel?rlR(w) where R(7w) = E( x &)y (ix) [c(x,y,¢)]

context in XT Tdecision in YV(x)

Access to evaluation oracle for ¢(x,y,¢).
No optimization oracle for min,cy ) c(x, y, ) or min,cy(x) E¢ [c(x,y,€)]

Alternating minimization: decomposition step is not tractable anymore
1 .
I = Y G argmin €y [0, 89)] + 0, (Y00 T () )
qi€A(x;

= Ez[ argmin c(x;, yi, &) — k(@0 (x) +2Z) yi]
Yi€Y(x;)

No oracle available T

Axel Parmentier Recent trends in COAML February 2, 2026,
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Replace Y(x;) by )A?,((t)(x,-): k atoms sampled from p(y|x;, w(t))

1 :
i = Y (%) arg min Eyg, [ c0x,y.6)| +nLa _y  (Y(x) T pg ()i ar)
qi€A(x;) aVk 00
=entr. SOft max, c$0(x) [mpv_v(t) (x))"yi — c(xi, vi, 5,-)] (Entropic regularization)

=pert. Ez[ argmin c(x;, yi, &) — k(@g0(xi) + £Z)Ty,-] (Perturbation)
) .
yleyk (X/)

TTractabIe by evaluation of the k elements of )A),Et) (xi)

®Heiko Hoppe et al. (2025). Structured Reinforcement Learning for Combinatorial Decision-Making.
arXiv: 2505.19053 [cs.LG]. url: https://arxiv.org/abs/2505.19053.
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Embedding in an actor critic to go multistage

Algorithm 1 Structured Reinforcement Learning

Initialize actor with model ., critic 1g and target critic 1 5 networks
for e episodes do
Generate trajectories, store and sample transitions j
for j transitions do
Perturb 0; = @ (s;) using Z ~ N(0;, 0p), sample m n;, solve f(n;, s;) for each n;

Calculate target action a; = softmaxa; L Qy,(s5,a})
Update actor using Lq (0;a) > using a second perturbation
Update critic by one step of gradient descent using J (¢g) = (Qy, (s;,a;) — yj)2
end for
end for

Axel Parmentier Recent trends in COAML February 2, 2026, 52/54



Numerical results

. GSPP
train test train test
1000 1000 1000 1000
—~ 100 100 — 100 100
= =
= 0 0
o S
Z -0 i -10 == 5 -10 -10
< -100 -100 T -100 -100
SN NSRS v VoS
%\QQ%%&Q%‘ ‘%’QQ(&@&ZJ Q%“” %‘Zo?qg"}
= 50 o 20
:/40 =0
; SIL g SIL
= 30 - = -
— -pPO| — -PPO
g 20 -SRL| & 7100 -SRL
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100 150 200
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by | oEeAR Conclusion

Neural network with combinatorial optimization layers improve state of the art
e Contextual Stochastic Optimization (tactic, strategic)
¢ Dynamic problems (operations)
in combinatorial settings.
Alternating minimization for empirical risk minimization
® Deep learning compatible
® |eads to practically better policies
e Convergence to minimum of empirical risk minimization problem
® Generalization guarantees (approximation ratio in probability)

® Can be turned into an RL algorithm
https://github.com/JuliaDecisionFocusedLearning

Combinatorial, convex, stochastic optimization, statistical learning.
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