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The Data-Driven Revolution in Operations Research

OR algorithms are embedded in data-driven
workflows

Exploit data to tame uncertainty
• More Efficient: Optimize resource

allocation
• More Robust: Handle unexpected

disruptions
• More Sustainable: Reduce waste and

empty miles / handle Sustainable Energies

Separating learning from decision can break
worklows

Performance

Sustainability Resilience
Uncertainty

Real time
Strategic

Mutualization
Synchronization

Comb Opt
Learning
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Value in OR comes from decreasing marginal costs
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flow reg: 0.001 sce: 50
fcg-bh reg: 0.001 sce: 50

• Pure ML fails on Combinatorial Optimization
• OR researchers tend to focus on CO to make algorithms scale
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The Trap: Predict-then-Optimize

First estimate the statistical model
Statistical

model
φw

instance data
x ∈ X θ ∈ Rd(x)

Parameters

Then solve the (stochastic) CO problem

CO
algorithm

f (θ)

θ ∈ Rd(x)

Parameters

y ∈ Y(x)
Solution

Learning algorithms ignore
application

Training set (x1, θ̄1), . . . , (xn, θ̄n)
Loss L(θ, θ̄)

Learning problem

min
w

1
n

n∑

i=1

L(φw (xi ), θ̄i )

Small prediction errors can lead to
catastrophic decisions
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Combinatorial Optimization Augmented Machine Learning

Statistical
model
φw

instance
data

x ∈ X CO algorithm
f (θ)

θ ∈ Rd(x)

Cost vector

y ∈ Y(x)
Solution

Trained by decision focused learning min
w

1
n

∑n
i=1 L(φw (xi ), ȳi ).

MP
x = (V,E,X)

MP MP. . . Readout max
y∈Y(x)

θ⊤y

Kruskal alg
for span.
tree ex

(
θv
)
v∈V

y ∈ Y(x)
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Plan

1 Applications in OR and architectures
Contextual stochastic optimization
Dynamic problems

2 Supervised learning for static problems

3 Empirical risk minimization for contextual stochastic optimization

4 Learning for dynamic problems
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Settings and architectures
Multistage
stochastic

optimization

Contextual
stochastic

optimization

Data-driven
optimization

�



�
	Neural Network

ϕw

Prize Collecting
VRPTW f

State
xt

Requests prizes

θv, ∀v ∈ xt
Epoch routes

yt
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�
	ML layers φw

(GLM or GNN)

Maximum
weight forest
(Kruskal)

Input

instance x

Edge weights θ Solution forest y

a b c

d e f

g h i
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�
	Conv. Neural

Network

Dijkstra’s
algorithm

�



�
	Loss

function

Map image Cell costs Shortest path

EURO NeurIPS
challenge 2022.
Baty et al. 2024;
Greif et al. 2024

Donti, Amos,
and Kolter 2017;
Dalle et al. 2022

Pogančić et al.
2019; Berthet
et al. 2020
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Plan

1 Applications in OR and architectures
Contextual stochastic optimization
Dynamic problems

2 Supervised learning for static problems

3 Empirical risk minimization for contextual stochastic optimization

4 Learning for dynamic problems
Supervised learning for dynamic problems
Structured Reinforcement Learning
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Resilience: Stochastic Vehicle Scheduling Problem

v1 v2

t

slack cp = vehicle cost + E
(
propagated delay cost

)

= cveh +
1
|Ω|

∑

ω∈Ω

∑

v∈P
ξPv (ω)

Reduce costs dues to delay propagation along rotations

o d

v1

v2

v3

v4

v5

v6

v7

v8
min

∑

P∈P
cPzy

∑

P∋v
yP = 1 ∀v

yP ∈ {0, 1}
Challenges
Even with simplest
delay models

• No tractable moment formulation
• SAA does not scale (exact |V | ≤ 80, heuristics |V | ≤ 400)
• Cannot afford more than a single deterministic resolution
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Decision aware learning for Contextual Stochastic VSP

�



�
	GLM

ϕw

VSP flow
Linear Program

�



�
	Loss

function

StoVSP

instance

Edge weights

θa, ∀a ∈ A
Vehicle routes

o

v1

v2

v3

v4

v5

v6

v7

v8

d

time

o

v1

v2

v3

v4

v5

v6

v7

v8

d

θ a

θa θ
a

θ
a

θa

θ a
θ
a

θ
a

θa θa θa

θ
a

θ a

θ a

θ
a

θ a

θ a

time

o

v1

v2

v3

v4

v5

v6

v7

v8

d

time

Excellent performance on large scale instances1

Enables being contextual

1A. P. (Apr. 2021). “Learning to Approximate Industrial Problems by Operations Research Classic
Problems”. In: Operations Research; Guillaume Dalle et al. (July 2022). Learning with Combinatorial
Optimization Layers: A Probabilistic Approach. eprint: 2207.13513.
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Contextual stochastic combinatorial optimization
Contextual stochastic optimization problem2

min
π∈H
R(π) where R(π) = E

( x , ξ ), y∼π(·|x)

[
c ( x , y , ξ )

]

decision in Y(x)context in X

noise correlated with x

Assumptions:
• we have an efficient algorithm to solve

min
y∈Y(x)

c
(
x(ω), y , ξ(ω)

)
+ ⟨θ|y⟩

• Y(x) is finite (but exponentially large)
• we have access to a dataset D = (xi , ξi )i∈[N]

2Utsav Sadana et al. (Mar. 2024). “A Survey of Contextual Optimization Methods for
Decision-Making under Uncertainty”. In: European Journal of Operational Research. issn: 0377-2217.
doi: 10.1016/j.ejor.2024.03.020. (Visited on 07/12/2024).
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Plan

1 Applications in OR and architectures
Contextual stochastic optimization
Dynamic problems

2 Supervised learning for static problems

3 Empirical risk minimization for contextual stochastic optimization

4 Learning for dynamic problems
Supervised learning for dynamic problems
Structured Reinforcement Learning
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Dynamic Vehicle Routing Problem

xt+1 = F (xt , yt)t = 1 t = 2 t = 3

State
xt ∈ X

set of customers

Decision
yt ∈ Y(xt)

set of routes

x1

y1
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Dynamic Vehicle Routing Problem

xt+1 = F (xt , yt)t = 1 t = 2 t = 3

State
xt ∈ X

set of customers

Decision
yt ∈ Y(xt)

set of routes

x1 x2 x3

y1 y2 y3
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Dynamic VRPTW

A solution of this problem is a policy:

π : X → Y
xt 7→ yt

Objective: find π⋆, serving all customers before end of horizon, and minimizing total
cost

π⋆ = argmin
π

E


 ∑

epochs t

total cost of routes in decision yt = π(xt)



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Policy that won the EURO-NeurIPS challenge3

�
�

�

Neural Network

φw

Prize Collecting
HGS f

State
xt

Customers prizes

θv , ∀v ∈ xt

10

5

2

−1
50

7

Decision
yt

3Léo Baty et al. (Feb. 2024). “Combinatorial Optimization-Enriched Machine Learning to Solve the
Dynamic Vehicle Routing Problem with Time Windows”. In: Transportation Science. issn: 0041-1655.
doi: 10.1287/trsc.2023.0107. (Visited on 07/18/2024).
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Policy that won the EURO-NeurIPS challenge3

Epoch decisions can be seen as the solution of a Prize
Collecting VRPTW:
• Serving customers is optional
• Serving customer v gives prize θv
• Objective: max profit = prize− routecost

max
y∈Y(xt)

∑

(u,v)∈x2
t

θvyu,v

︸ ︷︷ ︸
total prize

−
∑

(u,v)∈x2
t

cu,vyu,v

︸ ︷︷ ︸
total routes cost

.

• Algorithm: Prize Collecting Hybrid Genetic Search

⇒ Combinatorial Optimization layer f

�
�

�

Neural Network

φw

Prize Collecting
HGS f

State
xt

Customers prizes

θv , ∀v ∈ xt

10

5

2

−1
50

7

Decision
yt

3Léo Baty et al. (Feb. 2024). “Combinatorial Optimization-Enriched Machine Learning to Solve the
Dynamic Vehicle Routing Problem with Time Windows”. In: Transportation Science. issn: 0041-1655.
doi: 10.1287/trsc.2023.0107. (Visited on 07/18/2024).
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Policy that won the EURO-NeurIPS challenge3

Difficulty: no natural way of computing meaningful prizes
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3Léo Baty et al. (Feb. 2024). “Combinatorial Optimization-Enriched Machine Learning to Solve the
Dynamic Vehicle Routing Problem with Time Windows”. In: Transportation Science. issn: 0041-1655.
doi: 10.1287/trsc.2023.0107. (Visited on 07/18/2024).
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Policy that won the EURO-NeurIPS challenge3

Solution: use a neural network to predict request prizes θ = φw (xt)

�
�

�

Neural Network

φw

Prize Collecting
HGS f

State
xt

Customers prizes

θv , ∀v ∈ xt

10

5

2

−1
50

7

Decision
yt

3Léo Baty et al. (Feb. 2024). “Combinatorial Optimization-Enriched Machine Learning to Solve the
Dynamic Vehicle Routing Problem with Time Windows”. In: Transportation Science. issn: 0041-1655.
doi: 10.1287/trsc.2023.0107. (Visited on 07/18/2024).
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Policy for multistage stochastic optimization

xt xt+1 xt+2

yt yt+1

rt rt+1 rt+2

Statistical
model
φw

state
xt ∈ Xt CO algorithm

f (θ)
θ ∈ Rd(xt)

Cost vector

yt ∈ Y(xt)
Decision

Neural network with a CO layer: policy for MDPs with large state and decision spaces.

min
w

Eπ

∑

t

rt with πw ,t : Xt → Yt
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Plan

1 Applications in OR and architectures

2 Supervised learning for static problems

3 Empirical risk minimization for contextual stochastic optimization

4 Learning for dynamic problems
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Policy encoded by neural networks with CO layers
Goal: find a policy π that minimizes

min
π∈H

E
x∼Px , y∼π(·|x)

[
c0 (

x ; y
)]

decision in Y(x)instance in X

cost function

Px unknown but access to x1, . . . , xn.
Model choice: we restrict ourselves to policies πw based on

Instance
x ∈ X
−−−−−−→

�
�

�

ML layers

weights w

Parameter
θ−−−−−−−→ CO layer maxy∈Y(x) θ

⊤y
oracle f

Solution
y ∈ Y(x)
−−−−−−−−→

We thus seek weights w that minimize the risk

min
w

E
x∼Px , y∼πw (·|x)

[
c0 (

x ; y
)]
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End-to-end learning: two paradigms

Instance
x ∈ X−−−−−−→

�
�

�

ML layers

φw

Parameter
θ−−−−−−−→ CO layer maxy∈Y(x) θ

⊤y
oracle f

Solution
y ∈ Y(x)−−−−−−−→

�



�
	Loss

L

Empirical risk minimization
Dataset: D = (xi )i∈[N]

Learning problem:

min
w

1
N

N∑

i=1

c0
(
xi ; f

(
φw (xi )

))

Supervised learning
Dataset: D = (xi , ȳi )i∈[N]

Learning problem:

min
w

1
N

N∑

i=1

L
(
xi ; f

(
φw (xi )

)
, ȳi

)

→ We would like both to rely on stochastic gradient descent (SGD)
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Lack of informative derivatives

CO oracle f
maxy∈Y(x) θ

T y

θ =

∈Rd(x)

︷ ︸︸ ︷
φw (x)

Cost vector

y ∈ Y(x)
Solution

Piecewise-constant learning problem

1
N

N∑

i=1

c0
(
xi ; f

(
φw (xi )

) )

1
N

N∑

i=1

L
(
xi ; f

(
φw (xi )

)
, ȳi

)

y5 y6

y1

y2y3

y4
θ

Fy1

Fy2Fy3

Fy4

Fy5
Fy6

θ

w

c0
(
x ; f

(
φw (x)

)
)
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Smoothing by regularization or perturbation

max
µ∈C(x)

θTµ−Ω(µ), C(x) = conv
(
Y(x)

)

Ex. 1: Ω( µ ) = || µ ||22 + IC(x)( µ )

Ex. 2: Ω∗( θ ) = EZ [maxµ∈C(x)( θ +εZ )⊤µ]

Smoothed learning problem

1
N

N∑

i=1

E
y ∼πw (·|xi )

[
c0(xi ; y )

]

1
N

N∑

i=1

E
y ∼πw (·|xi )

[
L(xi ; y , ȳi )

]

µ
θ

θ ∈ ∂ΩC(µ)

µ = ∇Ω∗C(θ)

0 2 4 6 8
1

2

3

w

E
y

∼
π
w
(·
|x

i)

[ c
0 (
x i
;
y
)]
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Supervised learning: Fenchel-Young losses4

LΩ( θ ; ȳ ) =

Non-optimality of ȳ

as a solution of the
regularized prediction problem︷ ︸︸ ︷

max
y∈C(x)

(
⟨ θ |y⟩ − Ω(y)

)
−
(
⟨ θ | ȳ ⟩ − Ω( ȳ )

)

LΩ( θ ; ȳ ) = Ω∗( θ ) + Ω( ȳ )− ⟨ θ | ȳ ⟩

Properties that make SGD tractable

• LΩ(θ; ȳ) ≥ 0

• LΩ(θ; ȳ) = 0⇔ ȳ = ∇Ω∗(θ)

• Convex in θ

• ∇θLΩ(θ; ȳ) = f̂Ω(θ)− ȳ

4Blondel, Martins, and Niculae 2020.
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Fenchel-Young loss as a primal-dual Bregman divergence

µ
µ̄

θ

θ̄

Ω(y)

Slope θ

µ̄µ BΩ(µ̄||µ)

BΩ(µ̄||µ) = Ω(µ̄)− Ω(µ)− ⟨∇Ω(µ)|µ̄− µ⟩ and BΩ(µ̄||µ) = LΩ(θ; µ̄) = BΩ∗(θ||θ̄)

min
µ∈C

1
N

N∑

i=1

BΩ(µ̄i ||µ)⇔ min
θ∈Rd

1
N

N∑

i=1

LΩ(θ; µ̄i )
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Choice of the regularization: State of the art
∇θℓΩ(θ, ȳ) = ∇Ω∗(θ)− ȳ = argmax

µ∈C
θ⊤µ− Ω(µ)

Perturbation (Berthet et al. 2020)

Ω∗(θ) = Ez
[
max
y∈Y

(θ + z)⊤y
]

∇Ω∗(θ) = Ez
[
argmax

y∈Y
(θ + z)⊤y

]

MonteCarlo estimate of ∇Ω∗(θ):
Sample z1, . . . , zk and solve exactly

max
y∈Y

(θ + zi )
⊤y

Negentropy (e.g., Wainwright, Jordan, et al. 2008)

Ω(µ) = min
q∈∆Y

{
− H(q) : Ey∼q[y ] = µ

}

∇Ω∗(θ) = Ey∼p(·|θ)[y ]

Exact ∇Ω∗(θ) if max
y∈Y

θ⊤y tractable by dynamic

programming (Mensch and Blondel 2018)

H(q) = −
∑
y∈Y

q(y) log q(y)

p(y |θ) =
eθ

⊤y

Z(θ)
where Z(θ) =

∑
y∈Y

eθ
⊤y
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From Simulated Annealing to Metropolis Hasting
Simulated annealing (SA) with neigh. N

max
y∈Y

θ⊤y

is Metropolis Hasting (MH) MCMC for

Ey∼p(·|θ)[y ]

where p is the exponential family on Y

p(y |θ) = eθ
⊤y−A(θ) =

eθ
⊤y

Z (θ)

where Z (θ) =
∑
y∈Y

eθ
⊤y and A(θ) = logZ (θ)

Used in the 1980s to study SA convergence

Inputs: θ∈Rd , (0)∈Y, (tk), K ∈N, N , q
for k = 0 : K do

Sample a neighbor in N (y (k)):
y ′ ∼ q

(
y (k), ·

)

α(y (k), y ′)← 1 (SA) or
α(y (k), y ′)← q(y ′,y (k))

q(y (k),y ′)
(MH)

U ∼ U([0, 1])
∆(k)←⟨θ, y ′⟩+φ(y ′)−⟨θ, y (k)⟩−φ(y (k))
p(k) ←

α(y (k), y ′)

exp
(
∆(k)/tk

)

If U ≤ p(k), accept move: y (k+1) ← y ′

If U > p(k), reject move: y (k+1) ← y (k)

end for
Output: ŷ(θ) ≈ y (K)

(SA) or
ȳt(θ) = Eπθ,t

[Y ] ≈ 1
K

∑K
k=1 y

(k) (MH)

(faigle_convergence_1988; Mitra, Romeo, and Sangiovanni-Vincentelli 1986)
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MH gives stochastic gradient, solves regularized problem

Ey∼p(·|θ)[y ]︸ ︷︷ ︸
Expectation

= ∇A(θ)︸ ︷︷ ︸
Grad. of

logpartition

Introducing the Fenchel conjugate of A

Ω(µ)
.
= A∗(µ) = max

θ
θ⊤µ− A(θ)

as regularization, , denoting C = convY, we get

Ey∼p(·|θ)[y ]︸ ︷︷ ︸
MH (i.e., SA)

for this
inference problem

= ∇Ω∗(θ)︸ ︷︷ ︸
get

stochastic
gradients

= argmax
µ∈C

θ⊤µ− Ω(µ)

︸ ︷︷ ︸
which are near

optimal solutions of
regularized problem

Characterization of Ω

Ω(µ) = −H
(
p(·|θ)

)

= min
q∈∆Y

{
− H(q) : Ey∼q[y ] = µ

}

where
H(q) = − ∑

y∈Y
q(y) log(q(y)).

Classic results on variational inference in exponential families Wainwright, Jordan, et al. 2008
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= min
q∈∆Y

{
− H(q) : Ey∼q[y ] = µ

}

where
H(q) = − ∑

y∈Y
q(y) log(q(y)).

Classic results on variational inference in exponential families Wainwright, Jordan, et al. 2008
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MH gives stochastic gradient, solves regularized problem
Ey∼p(·|θ)[y ]︸ ︷︷ ︸
Expectation

= ∇A(θ)︸ ︷︷ ︸
Grad. of

logpartition
× µ

C
Rd

θ

µ = ∇Ω∗
C(θ)

θ ∈ ∂ΩC(µ)
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Ω(µ)
.
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SA as MH with Negentropy
Ey∼p(·|θ)[y ]︸ ︷︷ ︸
MH (i.e., SA)

for this
inference problem

= ∇Ω∗(θ)︸ ︷︷ ︸
get

stochastic
gradients

= argmin
µ∈C

θ⊤µ− Ω(µ)

︸ ︷︷ ︸
which are near

optimal solutions of
regularized problem

Parameter estimations with training set ȳ1, . . . , ȳN , and ȲN = 1
N

∑N
i=1 yi

θ̂n+1 = θ̂n + γn+1



ȲN −

MH estimate︷ ︸︸ ︷
1

Kn+1

Kn+1∑

k=1

y (n+1, k)




y (n+1,k): k-th iterate of MH
with temp t, direction θ̂n,
initialized at y (n+1,1) = y (n,Kn)

Under some classic assumptions for SGD, θ̂n
a.s.−−→ θ⋆

N

Proposition SGD convergence with MH estimate (Vivier Ardisson, Blondel, P., 2025)
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Plan

1 Applications in OR and architectures

2 Supervised learning for static problems

3 Empirical risk minimization for contextual stochastic optimization

4 Learning for dynamic problems
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Contextual stochastic combinatorial optimization5

Consider the risk

min
π∈H
R(π) where R(π) = E

( x , ξ ), y∼π(·|x)

[
c ( x , y , ξ )

]

decision in Y(x)context in X

noise correlated with x

Assumptions:
• we have an efficient algorithm to solve

min
y∈Y(x)

c
(
x(ω), y , ξ(ω)

)
+ ⟨θ|y⟩

• Y(x) is finite (but exponentially large)
• we have access to a dataset D = (xi , ξi )i∈[N]

Classic decomposition approaches from stochastic optimization (progressive hedging,
L-shaped method) may not scale

Our Approach: Louis Bouvier et al. (2025). “Primal-dual algorithm for contextual
stochastic combinatorial optimization”. In: arXiv preprint arXiv:2505.04757

5Sadana et al. 2024.
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A coordination heuristic
Given a training set (x1, ξi ), . . . , (xn, ξn), start with imitation learning

min
x

1
n

n∑

i=1

ℓ
(
φw (xi ), ȳi

)
where ȳi = argmin

y∈Y(xi )
c(xi , y , ξi )

Then minimize a linear combination of (anticipative) objective and prediction

ȳi = argmin
y∈Y(xi )

c(xi , y , ξi ) + κ (−φw (xi )
⊤y)︸ ︷︷ ︸

non regularized
ℓ(φw (xi ),y)constant

Then update w

min
w

∑

i

ℓ
(
φw (xi ), yi

)

and iterate

which happens to be an exact algorithm
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ȳi = argmin
y∈Y(xi )

c(xi , y , ξi ) + κ (−φw (xi )
⊤y)︸ ︷︷ ︸

non regularized
ℓ(φw (xi ),y)constant

Then update w

min
w

∑

i

ℓ
(
φw (xi ), yi

)

and iterate
which happens to be an exact algorithm

Axel Parmentier Recent trends in COAML February 2, 2026, 31/54



Applications
Toy problem

Scenario ξ1 Scenario ξ2 Scenario ξ3

Solution 0 4 -1 -2
Solution 1 0 0 0

ε
0 50 100 150

P
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Proportion of correct θ with ε

ε
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Surrogate problem on the distribution space

min
y∈Y

θ⊤y

is equivalent to

min
q∈∆Y

E(θ⊤y |q) = θ⊤Y︸︷︷︸
s⊤θ

q

Y =
(
y1

∣∣∣...
∣∣∣y|Y|

)

µ
θ

θ ∈ ∂ΩC(µ)

µ = ∇Ω∗C(θ)

y1 y2

y3

q
sθ

sθ ∈ ∂Ω∆(q)

q = ∇Ω∗∆(sθ)
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Empirical risk minimization and surrogate problem
Any cost function c(x , ·, ξ)
• vector γ in R|Y|, the dual of ∆Y

Surrogate problem minimizes:
• scenario decisions costs
• scenario decision divergence to policy

∆Y

RY

y1 y2

y3

q
sθ

ς

sθ ∈ ∂Ω∆(q)

q = ∇Ω∗∆(sθ)

min
w∈W

RN(πw ) :=min
w

1
N

N∑

i=1

Scenario i cost
under policy πw︷ ︸︸ ︷

Ey∼πw (·|xi )
[
c (xi , y , ξi )

]
= min

w

1
N

N∑

i=1

⟨ γi |∇Ω∗
∆(xi )

(
Y (xi )

⊤φw (xi )
)
⟩

min
w ,q⊗
SN(sw ; q⊗) := min

w ,q⊗

1
N

N∑

i=1

Ey∼qi

[
c (xi , y , ξi )

]

︸ ︷︷ ︸
independent pb
per scenario i

+κLΩ∆(xi )

(
Y (xi )

⊤φw (xi ); qi
)

︸ ︷︷ ︸
coupled by FY
loss to policy

cost vector
(
c(xi , y , ξi )

)
y∈Y
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Alternating minimization scheme
Surrogate problem

min
w ,q⊗
SN(sw ; q⊗) := min

w ,q⊗

1
N

N∑

i=1

Ey∼qi

[
c(xi , y , ξi )

]
+ κLΩ∆(xi )

(
Y (xi )

⊤φw (xi ); qi

)

Alternating minimization algorithm

q
(t+1)
i = argmin

qi∈∆(xi )
Ey∼qi

[
c(xi , y , ξi )

]
+ κLΩ∆(xi )

(
Y (xi )

⊤φw̄ (t)(xi ); qi

)
(decomposition)

w̄ (t+1) ∈ argmin
w∈W

1
N

N∑

i=1

LΩC(xi )

(
φw (xi );Y (xi )q

(t+1)
i

)
(coordination)

For well-chosen regularizations, we get tractable alternating minimization updates

Proposition Bouvier, Prunet, Leclère, P., 2025
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High-level strategy: minimizing the surrogate function
Given some technical assumptions / settings restrictions

Provided some technical assumptions, the (average) iterates q(t)⊗ concide with those
of mirror descent and converge to min

q⊗
mins⊗ SN(s⊗, q⊗)

Theorem Convergence to surrogate optimum Bouvier, Prunet, Leclère, P., 2025

θS,N ∈ argmin
θ

min
q⊗
SN(sθ, q⊗) =⇒ RN(θS,N)−min

θ
RN(θ) ≤ . . .

Proposition Empirical risk bound, Bouvier, Prunet, Leclère, P., 2025

In the large data regime, R(θS,N)−minθR(θ) ≤ . . .
Theorem Generalization bounds, Aubin-Frankowski, De Castro, P., Rudi, 2024
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Introducing sparse perturbation over distributions

Fε,C(θ) = E[max
y∈Y

(θ + εZ )⊤y ]

= E[max
y∈C

(θ + εZ )⊤y ]

→ Ωε,C = F ∗
ε,C

• defined over Rd

• strict convexity

• ∇θFε,C(θ) =
E[argmaxy∈C(θ + εZ )⊤y ]

• dom(F ∗
ε,C) = C

• F ∗
ε,C Legendre-type

Proposition Berthet et al. 2020

Fε,∆(s) = E[max
y∈Y

(s(y) + εZ )⊤y ]

= E[max
q∈∆

(s + εY⊤Z )⊤q]

→ Ωε,∆ = F ∗
ε,∆

• defined over RY

• strict convexity

• ∇sFε,∆(s) =
E[argmaxq∈∆Y (s + εY⊤Z )⊤q]

• dom(F ∗
ε,∆) = ∆Y

• F ∗
ε,∆ Legendre-type

Proposition Bouvier et al. 2025
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Tractable updates

Using Ωε,∆(x) = Fε,∆(x)(s)
∗

µ
(t+1)
i = Y (xi )q

(t+1)
i

= Y (xi )∇Fε,∆(xi )

(
Y (xi )

⊤φw̄ (t)(xi )−
1
κ
γi

)

= EZ
[
argmin
yi∈Y(xi )

c (xi , yi , ξi )− κ(φw̄ (t)(xi ) + εZ )⊤yi
]

• Swap integration and derivation
• Danskin’s theorem
• Dirac on a vertex

In the case ΩC(x) := F ∗
ε,C(x) and Ω∆(x) := F ∗

ε,∆(x) we get tractable approximate
alternating minimization updates

Proposition Bouvier, Prunet, Leclère, P., 2025
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Link with mirror descent (simplified)

µ
(t)
i

µ
(t+1)
i

θ̄(t) − 1
κξi

θ̄(t) = ∇ΩC( 1
N

∑N
j=1 µ

(t)
j )

µ
(t+1)
i = ∇Ω∗

C(θ̄
(t) − 1

κξi)

C⊗

(Rd)N

µ
(t)
⊗

µ
(t+1)
⊗

θ
(t)
⊗

θ
(t)
⊗ − η∇SN (µ

(t)
⊗ )

θ
(t)
⊗ = ∇Ψ⊗(µ

(t)
⊗ )

µ
(t+1)
⊗ = ∇Ω∗

⊗
(
θ
(t)
⊗ − η∇SN (µ

(t)
⊗ )

)

Our iterates coincide with the ones of mirror descent applied to

S̄N(q⊗) := min
s⊗
SN(s⊗; q⊗) =

1
N

N∑

i=1

⟨γi |qi ⟩+
κ

N

[ N∑

i=1

Ω∆(qi )− NΩ∆(
1
N

N∑

i=1

qi )

︸ ︷︷ ︸
Jensen gap

]

with a mirror map Ψ⊗ such that Ω⊗ = Ψ⊗ + I∆⊗

Theorem Bouvier, Prunet, Leclère, P., 2025
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Bounded non-optimality (in a restricted setting)

RN(θ) :=RN

(
pΩ∆

(·|θ)
)

SN(θ) := min
q⊗∈∆⊗

SN
(
sθ, q⊗

)
and θS,N ∈ argmin

θ
SN(θ) minθRN(θ)

RN(θS,N)

Let θ ∈ Rd , provided that ∇Ω∗
∆ is 1

L -Lipschitz-continuous with respect to || · ||

|SN(θ)−RN(θ)| ≤
3

2NLκ

N∑

i=1

|| γi ||2

we deduce that

RN( θS,N )−RN( θR,N ) ≤ 3
LκN

N∑

i=1

|| γi ||2
∈ argminθ SN(θ)

∈ argminθ RN(θ)

cost vector
(
c(xi , y , ξi )

)
y∈Y

Theorem Bouvier, Prunet, Leclère, P., 2025
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Which guarantees can we obtain for the policy returned by our
learning algorithm ?6

Get back to the c0(x , y) setting.

Contextual stochastic optimization: given x , ξ, define

c0(y , x) = c(x , y , ξ)

min
w∈W

Rnλ(hw ) with Rn,λ(hw ) =
1
n

n∑

i=1

EZ

{[
c0(ŷ(ψw (Xi ) + λZ (Xi )),Xi )

]}

6Pierre-Cyril Aubin-Frankowski et al. (July 2024). Generalization Bounds of Surrogate Policies for
Combinatorial Optimization Problems. doi: 10.48550/arXiv.2407.17200. arXiv: 2407.17200
[stat]. (Visited on 12/10/2024).
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Risks and estimators
R̄ = E

[
min

y∈Y(x)
c0(y ,X )

]

Rt(hw ) = EX ,Z

[
c0(ŷ(ψw (X ) + tZ (X )),X )

]

Rn,t(hw ) =
1
n

n∑

i=1

EZ

[
c0(ŷ(ψw (Xi ) + tZ (Xi )),Xi )

]

w∗ = argmin
w∈W

R0(hw ) opt. pol

wn,λ = argmin
w∈W

Rnλ(hw ) learn. opt.

walg
n,λ : learning algorithm result

0 ≤ R0(hwalg
n,λ

)− R̄ = R0(hwM,n,λ
)−Rλ(hwM,n,λ

)
︸ ︷︷ ︸

Pert. bias Theorem

+Rλ(hwM,n,λ
)−Rn,λ(hwM,n,λ

)
︸ ︷︷ ︸

Emp. process Theorem

+Rn,λ(hwM,n,λ
)−Rn,λ(hwn,λ

)
︸ ︷︷ ︸

Alt. min. alg.

+Rn,λ(hwn,λ
)−Rn,λ(hw⋆)

︸ ︷︷ ︸
≤0

+Rn,λ(hw⋆)−Rλ(hw⋆)︸ ︷︷ ︸
Emp. process Theorem

+Rλ(hw⋆)−R0(hw⋆)︸ ︷︷ ︸
Pert. bias Theorem

+R0(hw⋆)− R̄︸ ︷︷ ︸
Model bias.
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Let 0 ≥ 0 and λ > 0 be such that λ ≥ 0. Let τ ∈ (0, 1). Under conditions detailed
later, there exists a constant C > 0 that depends only on ε, τ and c0 such that for
any w ∈ W and n ≥ 1, one has

|R0(hw )−Rλ(hw )|= Cλτpolylog(λ) (Perturbation bias Theorem)

|Rλ(hw )−Rn,λ(hw )|= OP

( 1
λ
√
n

)
(Empirical process Theorem)

where polylog(λ) is a polynomial logarithm term.

Theorem Aubin-Frankowski, De Castro, P., and Rudi, 2024

Optimizing over λ, we get R0(hwalg
n,λ

)− R̄ −→
n→∞

R0(hw⋆)− R̄ in the large data regime.

Axel Parmentier Recent trends in COAML February 2, 2026, 43/54



Plan

1 Applications in OR and architectures

2 Supervised learning for static problems

3 Empirical risk minimization for contextual stochastic optimization

4 Learning for dynamic problems
Supervised learning for dynamic problems
Structured Reinforcement Learning
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Learning dynamic problem policy

Goal: find parameters w such that our pipeline is a “good” policy.

�
�

�

Neural Network

φw

Prize Collecting
HGS f

State
xt

Customers prizes

θv , ∀v ∈ xt

10

5

2

−1
50

7

Decision
yt

ŵ = argmin
w

1
n

n∑

i=1

L(φw (x
i ), ȳ i )
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Learn to imitate anticipative decisions7

We rebuild the anticipative decisions a posteriori

i 1 2 3

x i

ȳ i

Gives a training set x1, y1, . . . , xn, yn, and we can then formulate the learning problem
as minimizing the Fenchel Young loss.

7Léo Baty et al. (Feb. 2024). “Combinatorial Optimization-Enriched Machine Learning to Solve the
Dynamic Vehicle Routing Problem with Time Windows”. In: Transportation Science. issn: 0041-1655.
doi: 10.1287/trsc.2023.0107. (Visited on 07/18/2024).
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Additional ingredient needed on other problems8

We should solve (an empirical version of)

min
w

EX∼δw

[
L
(
φw (X ), δ∗(X )

]

while we solve (an empirical version of)

min
w

EX∼δ∗
[
L
(
φw (X ), δ∗(X )

]

How to build D?
• Several epoch: DAgger αδ∗ + (1− α)δw
• Single epoch: Add states from random policy

Why does it work ? Voting policy

x1a

x1b

x1c

x1d

x2a

x2b

x2c

x2d

x3a

x3b

x3c

x3d

1

1

1

1

1

1

1

1

Stage 1 Stage 2 Stage 3

Scenario 1

Scenario 2

Scenario 3

Scenario 4

• Average across states
• Learning conditional dist. via

gen. MLE
• Take mode

8Toni Greif et al. (Feb. 2024). Combinatorial Optimization and Machine Learning for Dynamic
Inventory Routing. arXiv: 2402.04463 [math]. (Visited on 03/04/2024).
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Single step reinforcement learning

Reinforcement learning setting

min
π∈H
R(π) where R(π) = E

( x , ξ ), y∼π(·|x)

[
c ( x , y , ξ )

]

decision in Y(x)context in X

noise (not observed)

Access to evaluation oracle for c(x , y , ξ).
No optimization oracle for miny∈Y(x) c(x , y , ξ) or miny∈Y(x) Eξ

[
c(x , y , ξ)

]

Alternating minimization: decomposition step is not tractable anymore

µ
(t+1)
i = Y (xi ) argmin

qi∈∆(xi )
Ey∼qi

[
c(xi , y , ξi )

]
+ κLΩ

∆Y(xi )

(
Y (xi )

⊤φw̄ (t)(xi ); qi

)

= EZ
[
argmin
yi∈Y(xi )

c(xi , yi , ξi )− κ(φw̄ (t)(xi ) + εZ )⊤yi
]

No oracle available
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Structured reinforcement learning9

Replace Y(xi ) by Ŷ(t)
k (xi ): k atoms sampled from p(y |xi ,w (t))

µ
(t+1)
i = Y (xi ) argmin

qi∈∆(xi )
Ey∼qi

[
c(xi , y , ξi )

]
+ κLΩ

∆
Ŷ(t)
k

(xi )

(
Y (xi )

⊤φw̄ (t)(xi ); qi

)

=entr. softmax
yi∈Ŷ

(t)
k (xi )

[
κφw̄ (t)(xi )

⊤yi − c(xi , yi , ξi )
]

(Entropic regularization)

=pert. EZ
[

argmin
yi∈Ŷ

(t)
k (xi )

c(xi , yi , ξi )− κ(φw̄ (t)(xi ) + εZ )⊤yi
]

(Perturbation)

Tractable by evaluation of the k elements of Ŷ(t)
k (xi )

9Heiko Hoppe et al. (2025). Structured Reinforcement Learning for Combinatorial Decision-Making.
arXiv: 2505.19053 [cs.LG]. url: https://arxiv.org/abs/2505.19053.

Axel Parmentier Recent trends in COAML February 2, 2026, 51/54

https://arxiv.org/abs/2505.19053
https://arxiv.org/abs/2505.19053


Embedding in an actor critic to go multistage
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Numerical results
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Conclusion
Neural network with combinatorial optimization layers improve state of the art
• Contextual Stochastic Optimization (tactic, strategic)
• Dynamic problems (operations)

in combinatorial settings.

Alternating minimization for empirical risk minimization
• Deep learning compatible
• Leads to practically better policies
• Convergence to minimum of empirical risk minimization problem
• Generalization guarantees (approximation ratio in probability)
• Can be turned into an RL algorithm

https://github.com/JuliaDecisionFocusedLearning

Combinatorial, convex, stochastic optimization, statistical learning.
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